ARM Instruction Intrinsics

Assembly instructions can be generated using the intrinsics in the following tables. Table 5-3 shows which intrinsics are available on the different ARM targets. Table 5-4 shows the calling syntax for each intrinsic, along with the corresponding assembly instruction and a description. Additional intrinsices for getting and setting the CPSR register and to enable/disable interrupts are provided in Section 6.8.1.

Table 5-3 ARM Intrinsic Support by Target

C/C++ Compiler Intrinsic ARM V5e (ARM9E) ARM V6 (ARM11) ARM V6M0 (Cortex-M0) ARM V7M3 (Cortex-M3) ARM V7M4 (Cortex-M4) ARM V7R (Cortex-R4) ARM V7A8 (Cortex-A8)
_ _clz yes yes yes yes yes yes
_ _delay_cycles yes yes yes yes
_ _get_MSP yes yes yes
_ _get_PRIMASK yes yes yes
_ _ldrex yes yes yes yes yes
_ _ldrexb yes yes yes yes yes
_ _ldrexd yes yes yes
_ _ldrexh yes yes yes yes yes
_ _MCR yes yes yes yes yes yes
_ _MRC yes yes yes yes yes yes
_ _ nop yes yes yes yes yes yes yes
_norm yes yes yes yes yes yes
_ _rev yes yes yes yes yes
_ _rev16 yes yes yes yes yes
_ _revsh yes yes yes yes yes
_ _rbit yes yes yes yes
_ _ror yes yes yes yes yes yes yes
_pkhbt yes yes yes yes
_pkhtb yes yes yes yes
_qadd16 yes yes yes yes
_qadd8 yes yes yes yes
_qaddsubx yes yes yes yes
_qsub16 yes yes yes yes
_qsub8 yes yes yes yes
_qsubaddx yes yes yes yes
_sadd yes yes yes yes yes
_sadd16 yes yes yes yes
_sadd8 yes yes yes yes
_saddsubx yes yes yes yes
_sdadd yes yes yes yes yes
_sdsub yes yes yes yes yes
_sel yes yes yes yes
_ _set_MSP yes yes yes
_ _set_PRIMASK yes yes yes
_shadd16 yes yes yes yes
_shadd8 yes yes yes yes
_shsub16 yes yes yes yes
_shsub8 yes yes yes yes
_smac yes yes yes yes yes
_smlabb yes yes yes yes yes
_smlabt yes yes yes yes yes
_smlad yes yes yes yes
_smladx yes yes yes yes
_smlalbb yes yes yes yes yes
_smlalbt yes yes yes yes yes
_smlald yes yes yes yes
_smlaldx yes yes yes yes
_smlaltb yes yes yes yes yes
_smlaltt yes yes yes yes yes
_smlatb yes yes yes yes yes
_smlatt yes yes yes yes yes
_smlawb yes yes yes yes yes
_smlawt yes yes yes yes yes
_smlsd yes yes yes yes
_smlsdx yes yes yes yes
_smlsld yes yes yes yes
_smlsldx yes yes yes yes
_smmla yes yes yes yes
_smmlar yes yes yes yes
_smmls yes yes yes yes
_smmlsr yes yes yes yes
_smmul yes yes yes yes
_smmulr yes yes yes yes
_smuad yes yes yes yes
_smuadx yes yes yes yes
_smusd yes yes yes yes
_smusdx yes yes yes yes
_smpy yes yes yes yes yes
_smsub yes yes yes yes yes
_smulbb yes yes yes yes yes
_smulbt yes yes yes yes yes
_smultb yes yes yes yes yes
_smultt yes yes yes yes yes
_smulwb yes yes yes yes yes
_smulwt yes yes yes yes yes
_ _sqrt yes yes yes yes
_ _sqrtf yes yes yes yes yes
_ssat16 yes yes yes yes
_ssata yes yes yes yes yes yes
_ssatl yes yes yes yes yes yes
_ssub yes yes yes yes yes
_ssub16 yes yes yes yes
_ssub8 yes yes yes yes
_ssubaddx yes yes yes yes
_ _strex yes yes yes yes yes
_ _strexb yes yes yes yes yes
_ _strexd yes yes yes
_ _strexh yes yes yes yes yes
_subc yes yes yes yes yes
_sxtab yes yes yes yes
_sxtab16 yes yes yes yes
_sxtah yes yes yes yes
_sxtb yes yes yes yes yes yes
_sxtb16 yes yes yes yes
_sxth yes yes yes yes yes yes
_uadd16 yes yes yes yes
_uadd8 yes yes yes yes
_uaddsubx yes yes yes yes
_uhadd16 yes yes yes yes
_uhadd8 yes yes yes yes
_uhsub16 yes yes yes yes
_uhsub8 yes yes yes yes
_umaal yes yes yes yes
_uqadd16 yes yes yes yes
_uqadd8 yes yes yes yes
_uqaddsubx yes yes yes yes
_uqsub16 yes yes yes yes
_uqsub8 yes yes yes yes
_uqsubaddx yes yes yes yes
_usad8 yes yes yes yes
_usat16 yes yes yes yes
_usata yes yes yes yes yes yes
_usatl yes yes yes yes yes yes
_usub16 yes yes yes yes
_usub8 yes yes yes yes
_usubaddx yes yes yes yes
_uxtab yes yes yes yes
_uxtab16 yes yes yes yes
_uxtah yes yes yes yes
_uxtb yes yes yes yes yes yes
_uxtb16 yes yes yes yes
_uxth yes yes yes yes yes yes
_ _wfe yes yes yes yes yes
_ _wfi yes yes yes yes yes

Table 5-4 shows the calling syntax for each intrinsic, along with the corresponding assembly instruction and a description. See Table 5-3 for a list of which intrinsics are available on the different ARM targets. Additional intrinsices for getting and setting the CPSR register and to enable/disable interrupts are provided in Section 6.8.1.

Table 5-4 ARM Compiler Intrinsics

C/C++ Compiler Intrinsic Assembly
Instruction
Description
int count = _ _clz(int src); CLZcount, src Returns the count of leading zeros.
void _ _delay_cycles( unsigned int cycles); varies Delays execution for the specified number of cycles. The number of cycles must be a constant.

The __delay_cycles intrinsic inserts code to consume precisely the number of specified cycles with no side effects. The number of cycles delayed must be a compile-time constant.

Note: Cycle timing is based on 0 wait states. Results vary with additional wait states. The implementation does not account for dynamic prediction. Lower delay cycle counts may be less accurate given pipeline flush behaviors.

unsigned int dst = _ _get_MSP(void ); MRSdst, MSP Returns the current value of the Main Stack Pointer.
unsigned int dst = _ _get_PRIMASK(void ); MRSdst, PRIMASK Returns the current value of the Priority Mask Register. If this value is 1, activation of all exceptions with configurable priority is prevented.
unsigned int dest = _ _ldrex(void* src); LDREXdst, src Loads data from memory address containing word (32-bit) data
unsigned int dest= _ _ldrexb(void* src); LDREXBdst, src Loads data from memory address containing byte data
unsigned long long dest = _ _ldrexd(void* src); LDREXDdst, src Loads data from memory address with long long support
unsigned int dest = _ _ldrexh(void* src); LDREXHdst, src Loads data from memory address containing halfword (16-bit) data
void __MCR (unsigned int coproc, unsigned int opc1, unsigned int src, unsigned int coproc_reg1, unsigned int coproc_reg2, unsigned int opc2); MCRcoproc, opc1, src, CR<coproc_reg1>, CR<coproc_reg2>, opc2 Access the coprocessor registers
unsigned int __MRC(unsigned int coproc, unsigned int opc1, unsigned int coproc_reg1, unsigned int coproc_reg2, unsigned int opc2); MRCcoproc, opc1, src, CR<coproc_reg1>, CR<coproc_reg2>, opc2 Access the coprocessor registers
void _ _nop( void ); NOP Perform an instruction that does nothing.
int dst = _norm(int src); CLZdst, src Count leading zero bits. This intrinsic can be used when implementing integer normalization.
int dst = _pkhbt(int src1, int src2, int shift); PKHBTdst , src1 , src2 , #shift Combine bottom halfword of src1 with shifted top halfword of src2
nt dst = _pkhtb(int src1, int src2, int shift); PKHTBdst , src1 , src2 , #shift Combine top halfword of src1 with shifted bottom halfword of src2
int dst = _qadd16(int src1, int src2 ); QADD16dst, src1, src2 Performs two signed halfword saturated additions
int dst = _qadd8(int src1, int src2 ); QADD8dst, src1, src2 Performs four signed saturated 8-bit additions
int dst = _qaddsubx(int src1, int src2); QASXdst , src1 , src2 Exchange halfwords of src2, perform signed saturated addition on the top halfwords and signed saturated subtraction on the bottom halfwords.
int dst = _qsub16(int src1, int src2 ); QSUB16dst, src1, src2 Performs two signed saturated halfword subtractions
int dst = _qsub8(int src1, int src2 ); QSUB8dst, src1, src2 Performs four signed saturated 8-bit subtractions
int dst = _qsubaddx(int src1, int src2); QSAXdst , src1 , src2 Exchange halfwords of src2, perform signed saturated subtraction on top halfwords and signed saturated addition on bottom halfwords
int dst = _ _rbit(int src); RBITdst, src Reverses the bit order in a word.
int dst = _ _rev(int src); REVdst, src Reverses byte order in a word. That is, converts 32-bit data between big-endian and little-endian or vice versa.
int dst = _ _rev16(int src); REV16dst, src Reverses byte order in each byte in a word independently. That is, converts 16-bit data between big-endian and little-endian or vice versa.
int dst = _ _revsh(int src); REVSHdst, src Reverses byte order in the lower byte of a word, and extends the sign to 32 bits. That is, converts 16-bit signed data to 32-bit signed data, while also converting between big-endian and little-endian or vice versa.
int dst = _ _ror(int src , int shift); RORdst, src, shift Rotates the value to the right by the number of bits specified. Bits rotated off the right end are placed into empty bits on the left.
int dst =_sadd(int src1, int src2); QADDdst, src1, src2 Saturated add
int dst = _sadd16(int src1, int src2); SADD16dst , src1 , src2 Performs two signed halfword additions
int dst = _sadd8(int src1, int src2); SADD8dst , src1 , src2 Performs four signed 8-bit additions
int dst = _saddsubx(int src1, int src2); SASXdst , src1 , src2 Exchange halfwords of src2, add the top halfwords and subtract the bottom halfwords
int dst =_sdadd(int src1, int src2); QDADDdst, src1, src2 Saturated double-add
int dst =_sdsub(int src1, int src2); QDSUBdst, src1, src2 Saturated double-subtract
int dst = _sel(int src1, int src2); SELdst , src1 , src2 Selects byte n from src1 if GE bit n is set or from src2 if GE bit n is not set, where n ranges from 0 to 3.
void _ _set_MSP(unsigned int src); MSR MSP,src Sets the value of the Main Stack Pointer to src.
unsigned int dst = _ _set_PRIMASK(unsigned int src); MRSdst, PRIMASK (optional)
MSR PRIMASK,src
Sets the Priority Mask Register to the src value and returns the value as it was prior to being set as dst. Setting this register to 1 prevents the activation of all exceptions with configurable priority.
int dst = _shadd16(int src1, int src2); SHADD16dst , src1 , src2 Performs two signed halfword additions and halves the results
int dst = _shadd8(int src1, int src2); SHADD8dst , src1 , src2 Performs four signed 8-bit additions and halves the results
int dst = _shsub16(int src1, int src2); SHSUB16dst , src1 , src2 Performs two signed halfword subtractions and halves the results
int dst = _shsub8int src1, int src2); SHSUB8dst , src1 , src2 Performs four signed 8-bit subtractions and halves the results
int dst =_smac(int dst, int src1, int src2); SMULBBtmp, src1, src2
QDADDdst, dst, tmp
Saturated multiply-accumulate
int dst =_smlabb(int dst, short src1, short src2); SMLABBdst, src1, src2 Signed multiply-accumulate bottom halfwords
int dst =_smlabt(int dst, short src1, int src2); SMLABTdst, src1, src2 Signed multiply-accumulate bottom and top halfwords
int dst_smlad(int src1, int src2, int acc); SMLADdst , src1 , src2, acc Performs two signed 16-bit multiplications on the top and bottom halfwords of src1 and src2 and adds the results to acc.
int dst_smladx(int src1, int src2, int acc); SMLADXdst , src1 , src2, acc Same as _smlad except the halfwords in src2 are exchange before the multiplication.
long long dst =_smlalbb(long long dst, short src1, short src2); SMLALBBdstlo, dsthi, src1, src2 Signed multiply-long and accumulate bottom halfwords
long long dst =_smlalbt(long long dst, short src1, int src2); SMLALBTdstlo, dsthi, src1, src2 Signed multiply-long and accumulate bottom and top halfwords
long long dst_smlald(long long acc , int src1, int src2); SMLALDdst , src1 , src2 Performs two 16-bit multiplication on the top and bottom halfwords of src1 and src2 and adds the results to the 64-bit acc operand
long long dst_smlaldx(long long acc , int src1, int src2); SMLALDXdst , src1 , src2 Same as _smlald except the halfwords in src2 are exchanged.
long long dst =_smlaltb(long long dst, int src1, short src2); SMLALTBdstlo, dsthi, src1, src2 Signed multiply-long and accumulate top and bottom halfwords
long long dst =_smlaltt(long long dst, int src1, int src2); SMLALTTdstlo, dsthi, src1, src2 Signed multiply-long and accumulate top halfwords
int dst =_smlatb(int dst, int src1, short src2); SMLATBdst, src1, src2 Signed multiply-accumulate top and bottom halfwords
int dst =_smlatt(int dst, int src1, int src2); SMLATTdst, src1, src2 Signed multiply-accumulate top halfwords
int dst_smlawb(int src1, short src2, int acc); SMLAWBdst, src1, src2 Signed multiply-accumulate word and bottom halfword
int dst_smlawt(int src1, short src2, int acc); SMLAWTdst, src1, src2 Signed multiply-accumulate word and top halfword
int dst_smlsd(int src1, int src2, int acc); SMLSDdst , src1 , src2, acc Performs two signed 16-bit multiplications on the top and bottom halfwords of src1 and src2 and adds the difference of the results to acc.
int dst_smlsdx(int src1, int src2, int acc); SMLSDXdst , src1 , src2, acc Same as _smlsd except the halfwords in src2 are exchange before the multiplication.
long long dst_smlsld(long long acc , int src1, int src2); SMLSLDdst , src1 , src2 Performs two 16-bit multiplication on the top and bottom halfwords of src1 and src2 and adds the difference of the results to the 64-bit acc operand.
long long dst_smlsldx(long long acc , int src1, int src2); SMLSLDXdst , src1 , src2 Same as _smlsld except the halfwords in src2 are exchanged.
int dst_smmla(int src1, int src2, int acc); SMMLAdst , src1 , src2, acc Performs a signed multiplication on src1 and src2, extracts the most significant 32 bits of the result, and adds an accumulate value.
int dst_smmlar(int src1, int src2, int acc); SMMLARdst , src1 , src2, acc Same as _smmla execpt the result is rounded instead of being truncated.
int dst_smmls(int src1, int src2, int acc); SMMLSdst , src1 , src2, acc Performs a signed multiplication on src1 and src2, subtracts the result from an accumulate value that is shifted left by 32 bits, and extracts the most significant 32 bits of the result of the subtraction.
int dst_smmlsr(int src1, int src2, int acc); SMMLSRdst , src1 , src2, acc Same as _smmls except the result is rounded instead of being truncated.
int dst_smmul(int src1, int src2, int acc); SMMULdst , src1 , src2, acc Performs a signed 32-bit multiplication on src1 and src2 and extracts the most significant 32-bits of the result.
int dst_smmulr(int src1, int src2, int acc); SMMULRdst , src1 , src2, acc Same as _smmul except the result is rounded instead of being truncated.
int dst =_smpy(int src1, int src2); SMULBBdst, src1, src2
QADDdst, dst, dst
Saturated multiply
int dst =_smsub(int src1, int src2); SMULBBtmp, src1, src2
QDSUBdst, dst, tmp
Saturated multiply-subtract
int dst_smuad(int src1, int src2); SMUADdst , src1 , src2 Performs two signed 16-bit multiplications on the top and bottom halfwords and adds the products.
int dst_smuadx(int src1, int src2); SMUADXdst , src1 , src2 Same as _smuad except the halfwords in src2 are exchange before the multiplication.
int dst =_smulbb(int src1, int src2); SMULBBdst, src1, src2 Signed multiply bottom halfwords
int dst =_smulbt(int src1, int src2); SMULBTdst, src1, src2 Signed multiply bottom and top halfwords
int dst =_smultb(int src1, int src2); SMULTBdst, src1, src2 Signed multiply top and bottom halfwords
int dst =_smultt(int src1, int src2); SMULTTdst, src1, src2 Signed multiply top halfwords
int dst_smulwb(int src1, short src2, int acc); SMULWBdst, src1, src2 Signed multiply word and bottom halfword
int dst_smulwt(int src1, short src2, int acc); SMULWTdst, src1, src2 Signed multiply word and top halfword
int dst_smusd(int src1, int src2); SMUSDdst , src1 , src2 Performs two signed 16-bit multiplications on the top and bottom halfwords and subtracts the products.
int dst_smusdx(int src1, int src2); SMUSDXdst , src1 , src2 Same as _smusd except the halfwords in src2 are exchanged before the multiplication.
double __sqrt( double ); VSQRTdst , src1 Return the square root of the specified double. This intrinsic is directly replaced with the VSQRT instruction if --fp_mode=relaxed. If strict floating point mode is used, the function must also set an errno if a domain error occurs.
float __sqrtf( float ); VSQRTdst , src1 Return the square root of the specified float. This intrinsic is directly replaced with the VSQRT instruction if --fp_mode=relaxed. If strict floating point mode is used, the function must also set an errno if a domain error occurs.
int dst =_ssat16(int src, int bitpos); SSAT16dst, #bitpos Performs two halfword saturations to a selectable signed range specified by bitpos
int dst =_ssata(int src, int shift , int bitpos); SSATdst, #bitpos,src, ASR #shift Right shifts src and saturates to a selectable signed range specified by bitpos
int dst =_ssatl(int src , int shift , int bitpos); SSATdst, #bitpos,src, LSL #shift Left shifts src and saturates to a selectable signed range specified by bitpos
int dst =_ssub(int src1, int src2); QSUBdst, src1, src2 Saturated subtract
int dst = _ssub16(int src1, int src2); SSUB16dst , src1 , src2 Performs two signed halfword subtractions
int dst = _ssub8(int src1, int src2); SSUB8dst , src1 , src2 Performs four signed 8-bit subtractions
int dst = _ssubaddx(int src1, int src2); SSAXdst , src1 , src2 Exchange halfwords of src2, subtract the top halfwords and add the bottom halfwords
int status = _ _strex(unsigned int src, void* dst); STREXstatus, src, dest Stores word (32-bit) data in memory address
int status = _ _strexb(unsigned char src, void* dst); STREXBstatus, src, dest Stores byte data in memory address
int status = _ _strexd(unsigned long long src, void* dst); STREXDstatus, src, dest Stores long long data in memory address
int status = _ _strexh(unsigned short src, void* dst); STREXHstatus, src, dest Stores halfword (16-bit) data in memory address
int dst = _subc(int src1, int src2); SUBCdst, src1, src2 Subtract with carry
int dst_sxtab(int src1, int src2, int rotamt); SXTABdst, src1, src2, ROR #rotamt Extracts an optionally rotated 8-bit value from src2 and sign extends it to 32 bits, then adds the value to src1. The rotation amount can be 0, 8, 16, or 24.
int dst_sxtab16(int src1, int src2, int rotamt); SXTAB16dst, src1, src2, ROR #rotamt Extracts two optionally rotated 8-bit values from src2 and sign extends them to 16 bits each, then adds the values to the two 16-bit values in src1. The rotation amount should be 0, 8, 16, or 24.
int dst_sxtah(int src1, int src2, int rotamt); SXTAHdst, src1, src2, ROR #rotamt Extracts an optionally rotated 16-bit value from src2 and sign extends it to 32 bits, then adds the result to src1. The rotation amount can be 0, 8, 16, or 32.
int dst_sxtb(int src1, int rotamt); SXTBdst, src1, ROR #rotamt Extracts an optionally rotated 8-bit value from src1 and sign extends it to 32 bits. The rotation amount can be 0, 8, 16, or 24.
int dst_sxtb16(int src1, int rotamt); SXTAB16dst, src1, ROR #rotamt Extracts two optionally rotated 8-bit values from src1 and sign extends them to 16-bits. The rotation amount can be 0, 8, 16, or 24.
int dst_sxth(int src1, int rotamt); SXTHdst, src1, ROR #rotamt Extracts an optionally rotated 16-bit value from src2 and sign extends it to 32 bits. The rotation amount can be 0, 8, 16, or 24.
int dst = _uadd16(int src1, int src2); UADD16dst , src1 , src2 Performs two unsigned halfword additions
int dst = _uadd8(int src1, int src2); UADD8dst , src1 , src2 Performs four unsigned 8-bit additions
int dst = _uaddsubx(int src1, int src2); UASXdst , src1 , src2 Exchange halfwords of src2, add the top halfwords and subtract the bottom halfwords
int dst = _uhadd16(int src1, int src2); UHADD16dst , src1 , src2 Performs two unsigned halfword additions and halves the results
int dst = _uhadd8(int src1, int src2); UHADD8dst , src1 , src2 Performs four unsigned 8-bit additions and halves the results
int dst = _uhsub16(int src1, int src2); UHSUB16dst , src1 , src2 Performs two unsigned halfword subtractions and halves the results
int dst = _uhsub8(int src1, int src2); UHSUB8dst , src1 , src2 Performs four unsigned 8-bit subtractions and halves the results
int dst = _umaal(long long acc , int src1 , int src2 ); UMAALdst1 , dst2 , src1, src2 Performs an unsigned 32-bit multiplication on src1 and src2, then adds two unsigned 32-bit values in acc.
int dst = _uqadd16(int src1, int src2); UQADD16dst , src1 , src2 Performs two unsigned halfword saturated additions
int dst = _uqadd8(int src1, int src2); UQADD8dst , src1 , src2 Performs four unsigned saturated 8-bit additions
int dst = _uqaddsubx(int src1, int src2); UQASXdst , src1 , src2 Exchange halfwords of src2, perform unsigned saturated addition on the top halfwords and unsigned saturated subtraction on the bottom halfwords.
int dst = _uqsub16(int src1, int src2); UQSUB16dst , src1 , src2 Performs two unsigned saturated halfword subtractions
int dst = _uqsub8(int src1, int src2); UQSUB8dst , src1 , src2 Performs four unsigned saturated 8-bit subtractions
int dst = _uqsubaddx(int src1, int src2); UQSAXdst , src1 , src2 Exchange halfwords of src2, perform unsigned saturated subtraction on top halfwords and unsigned saturated addition on bottom halfwords
int dst = _usad8(int src1, int src2); USAD8dst , src1 , src2 Performs four unsigned 8-bit subtractions, and adds the absolute value of the differences together.
int dst =_usat16(int src, int bitpos); USAT16dst, #bitpos Performs two halfword saturations to a selectable unsigned range specified by bitpos
int dst =_usata(int src, int shift, int bitpos); USATdst, #bitpos,src, ASR #shift Right shifts src and saturates to a selectable unsigned range specified by bitpos
int dst =_usatl(int src, int shift, int bitpos); USATdst, #bitpos,src, LSL #shift Left shifts src and saturates to a selectable unsigned range specified by bitpos
int dst = _usub16(int src1, int src2); USUB16dst , src1 , src2 Performs two unsigned halfword subtractions
int dst = _usub8(int src1, int src2); USUB8dst , src1 , src2 Performs four unsigned 8-bit subtractions
int dst = _usubaddx(int src1, int src2); USAXdst , src1 , src2 Exchange halfwords of src2, subtract the top halfwords and add the bottom halfwords
int dst_uxtab(int src1, int src2, int rotamt); UXTABdst, src1, src2, ROR #rotamt Extracts an optionally rotated 8-bit value from src2 and zero extends it to 32 bits, then adds the value to src1. The rotation amount can be 0, 8, 16, or 24.
int dst_uxtab16(int src1, int src2, int rotamt); UXTAB16dst, src1, src2, ROR #rotamt Extracts two optionally rotated 8-bit values from src2 and zero extends them to 16 bits each, then adds the values to the two 16-bit values in src1. The rotation amount should be 0, 8, 16, or 24.
int dst_uxtah(int src1, int src2, int rotamt); UXTAHdst, src1, src2, ROR #rotamt Extracts an optionally rotated 16-bit value from src2 and zero extends it to 32 bits, then adds the result to src1. The rotation amount can be 0, 8, 16, or 32.
int dst_uxtb(int src1, int rotamt); UXTBdst, src1, ROR #rotamt Extracts an optionally rotated 8-bit value from src2 and zero extends it to 32 bits. The rotation amount can be 0, 8, 16, or 24.
int dst_uxtb16(int src1, int rotamt); UXTB16dst, src1, ROR #rotamt Extracts two optionally rotated 8-bit values from src1 and zero extends them to 16-bits. The rotation amount can be 0, 8, 16, or 24.
int dst_uxth(int src1, int rotamt); UXTHdst, src1, ROR #rotamt Extracts an optionally rotated 16-bit value from src2 and zero extends it to 32 bits. The rotation amount can be 0, 8, 16, or 24.
void _ _wfe( void ); WFE Wait for event. Save power by waiting for an exception or event..
void _ _wfi( void ); WFI Wait for interrupt. Enter standby, dormant or shutdown mode, where an interrupt is required to wake-up the processor.

In addition, the compiler supports many of the intrinsics described in the ARM C Language Extensions (ACLE) specification. These intrinsics are applicable for the Cortex-M and Cortex-R processor variants. The ACLE intrinsics are implemented in order to support the development of source code that can be compiled using ACLE-compliant compilers from multiple vendors for a variety of ARM processors. A number of the intrinsics are duplicates of intrinsics listed in the previous table but with slightly different names (such as one vs. two leading underscores).

The compiler does not support all of the ACLE intrinsics listed in the ACLE specification. For example, the __cls, __clsl, and __clsll ACLE intrinsics are not supported, because the CLS instruction is not available on the Cortex-M or Cortex-R architectures.

In order to use the ACLE intrinsics, your code must include the provided arm_acle.h header file. For details about the ACLE intrinsics, see the ACLE specification. For information about which ACLE intrinsics are supported, see the arm_acle.h file. Where applicable, the declarations of ACLE intrinsics that are not supported are enclosed in comments in that header file along with a brief explanation of why the intrinsic is not supported and a reference to the appropriate section in the ACLE specification where the intrinsic is described.