

System Analyzer v1.1
Getting Started Guide

June 29, 2012

2

Contents

System Analyzer v1.1 Getting Started Guide .. 1
About System Analyzer .. 3
Exploring System Analyzer With Captured Data .. 5

2.1 Exploring the CPU Load... 7
2.2 Exploring the Execution Graph .. 8
2.3 Exploring the Concurrency Analysis .. 9
2.4 Exploring the Task Profiler ... 10
2.5 Exploring the Duration Analysis ... 10
2.6 Exploring the Context Aware Profile .. 11

Creating Sample Projects .. 12
3.1 Notes for EVM6472 MessageQ Project Template ... 13
3.2 Notes for EVMTI816x SimpleTask Project Templates ... 14
3.3 Notes for Single-Core Stairstep Project Templates .. 15
3.4 Notes for System Analyzer Tutorial Project Templates .. 15
3.5 For More Information ... 16

Capturing Live Data in a Sample Project ... 17
4.1 Creating the Project ... 18
4.2 Modifying the C Source Code .. 19
4.3 Modifying the Configuration File ... 21
4.4 Building the Project .. 23
4.5 Debugging the Project ... 24
4.6 Capturing System Analyzer Data with the Project .. 26
4.7 Analyzing System Analyzer Data ... 28

3

Chapter 1

About System Analyzer

The System Analyzer tool suite provides real-time visibility into the performance
and behavior of your code running on TI's embedded single-core and multi-core
devices. It allows you to analyze information that is collected from software and
hardware instrumentation in a number of different ways. It includes both host-
side tooling and target-side code modules (the UIA software package).

4

Within Code Composer Studio, System Analyzer provides:

• Visual tools for application analysis, including:

o Benchmarking how long an action takes to complete, including context-
awareness for multi-threaded analysis.

o Load monitoring for the CPU load of the entire application and individual
threads.

o Execution sequence analysis for monitoring task switches and the state
of kernel objects such as semaphores.

o Data analysis for monitoring the number and types of changes over time
for a data value.

• Multi-core event correlation for software and hardware events

• Real-time event monitoring and analysis

• Recording and playback of events. You can further analyze events by
searching, filtering, and sorting them in various ways.

On the target(s), the Unified Instrumentation Architecture (UIA) software package
provides:

• Event loggers and a service framework for capturing events and
transporting them to the host.

• Transports using both JTAG and non-JTAG (for example, Ethernet and file).

• Software events and metadata are predefined for many common uses

• SYS/BIOS events are pre-instrumented and easy to enable

• Software instrumentation APIs to control loggers, events, and more

See http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer for more
information about what System Analyzer can do.

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer

5

Chapter 2

Exploring System Analyzer With
Captured Data

You can experiment with the host-side System Analyzer features using a CSV
(comma-separated values) data file that is provided with the DVT installation.
This file is a recording of instrumentation data collected in a run-time session
using a 6-core EVM6472 application.

Using this recorded data is a quick and easy way to try out the analysis features
provided by System Analyzer. You don’t need to have a hardware target, a CCS
project, a target configuration, or a debugging session.

To load the provided CSV file, follow these steps:

1) Start Code Composer Studio 5.2.

2) In the Debug perspective, choose the Tools > System Analyzer > Open
CSV File menu command.

3) In the CSV File Parameters dialog, click the “…” button to the right of the File
Name field.

4) Browse to the <ccs_install>\ccsv5\ccs_base\dvt_3.x.x.xx\
AnalysisLibrary\DataProviders\CsvViewer folder, where x.x.xx is
the latest version of DVT you have installed. (CSV files for specific analysis
features are in the ccs_install>\ccsv5\ccs_base\dvt_3.x.x.xx\
AnalysisLibrary\AnalysisFeatures directory.)

5) Select the saSampleData.csv file and click Open.

6

6) In the Analysis Feature column, choose features you want to use. These
features will process events that apply to them when you open the CSV file.
For this example, check the following boxes. (You can open additional
analysis features and views after you open the CSV file.)

7) In the Which Cores column, you can choose whether to display events from
ALL cores or a single core. For this example, use ALL cores.

8) In the Which Views to Open column, you can choose the view types you
want to open now. You can later open more views, but these checkboxes
provide an easy way to open several.

9) Click Start. You will see the Log View and the views you selected.

10) Explore the views that you opened as described in the following sections.
You can press F1 to get help on using a particular view.

When you are using your own SYS/BIOS application with System Analyzer, you
can use the CPU Load, Task Load, Task Profiler, Execution Graph, and
Concurrency features without having to add any C code to your target
application.

The Context Aware Profile, Duration, Count Analysis, and Printf Logs features
require that you add API calls to log some additional events for benchmarking or
data value changes. Benchmarking events were added to the application used to
record this sample CSV file.

7

2.1 Exploring the CPU Load

Move to the CPU Load graph view. This view shows the change in CPU load (as
a percentage) with time for each CPU.

Try the following:

• Click on the name of a CPU above the graph to highlight the corresponding
line in the graph. (If you do not see these buttons, right click on the graph
and choose Legend.)

• Zoom in with the toolbar icon. Zoom in further by holding down the Alt
key and using the mouse to outline the part of the graph you want to expand.

• Open the summary view for the CPU load by clicking the CPU Load views
drop-down in the view’s toolbar and choosing Summary. Most of the System
Analyzer features provide a graph, summary, and detail view. The summary
and detail views present data in a table.

• Press F1 to get help on using this view (or any System Analyzer view).

• Task Load views are similar to CPU load views, except that they show the
load due to individual threads on a single core. You can open a Task Load
view by going to the CSV File – saSampleData.csv: Log view and choosing
Analyze > Task Load in that view’s toolbar. In the Core or Master field, type
C64XP_B (or some other core name in this example) and click Start.

8

2.2 Exploring the Execution Graph

Move to the Execution Graph view. This view shows which thread is running at a
given time. Sources (cores and threads) are listed in the left column. Click on a
source to open an indented list of contexts for that source.

Try the following:

• Zoom in and out with the toolbar icons. You will probably need to
zoom in several times to see execution state transitions.

• Click on a row named with the format <core name>.OS to open the list of
threads on that core. A colored line for each item shows when that context is
in control.

• Click the icon in both both the CPU Load graph and the Execution
Graph. Arrange your CCS window to show both views at the same time.
Scroll one of the graphs horizontally. Notice that both graphs scroll together.
This is called grouping. The graphs scroll at different speeds if they are
displayed at different zoom levels. A single group is created for all the views
of the same System Analyzer data when you enable grouping. You can
group both graphs and detail views to scroll together; the times at which
events occur are correlated between the views.

• Various DSP/BIOS thread types have their own category with flags for pend
and post events and brackets for start and stop events.

9

2.3 Exploring the Concurrency Analysis

Move to the Concurrency graph view. This graph shows how many cores were
active at any time.

Try the following:

• Zoom in and out with the toolbar icons. You will probably need to
zoom in several times to see concurrency transitions.

• Open the summary view for Concurrency by clicking the Concurrency views
drop-down in the view’s toolbar and choosing Summary. The summary view
shows the percent of time particular numbers of processors were running at
the same time.

10

2.4 Exploring the Task Profiler

Move to the Task Profiler view. This table shows what percent of the time a Task
thread spent in each state. The percentages in each row total to 100%.

2.5 Exploring the Duration Analysis

Move to the Duration graph view. Like the Context Aware Profile, this graph
shows the time between called to Log_write() with a UIABenchmark start or stop
even. However, the time reported by the Duration feature includes time spent in
any context, including Hwi and Swi threads.

11

2.6 Exploring the Context Aware Profile
Go to the CSV File – saSampleData.csv: Log view and choose Analyze >
Context Aware Profile in that view’s toolbar. In the “Core or Master” field, type
C64XP_B (or some other core name in this example) and click Start.

Move to the Context Aware Profile summary view. This view shows durations
considering context switches, interruptions, and execution of other functions. The
application used to record the sample CSV file included Log_write() API calls that
used UIABenchmark events to report the start and stop times to a duration to be
measured.

Notice that there are columns for inclusive times and exclusive times. Inclusive
time is the time between a given pair of start and stop times, including time spent
in other Task threads but not Swi or Hwi threads. Exclusive time counts only the
time spent running this particular thread.

• Click the Auto Fit Columns icon to resize the columns to fit the text they
contain.

12

Chapter 3

Creating Sample Projects

System Analyzer and UIA provide a number of project templates for use in CCS.

To use these project templates, begin creating a new CCS project by choosing
File > New > CCS Project from the menus. In the Project Templates section of
the New Project wizard, expand the System Analyzer (UIA) item to see the list
of available templates.

When you select a project template, a description of the project is shown to the
right. Finish creating the project and examine the *.c code files and *.cfg
configuration file. All required products and repositories are pre-configured.

Multi-core project templates are available for the EVM6472 and the EVMTI816x.
Single-core project templates that use the “stairstep” example from SYS/BIOS
are available for a number of supported transports. Additional tutorial examples
are provided; these are described on the Texas Instruments Embedded
Processors Wiki.

13

See the sections that follow for any specific notes about settings or changes you
need to make to the project files before building, loading, and running it.

3.1 Notes for EVM6472 MessageQ Project Template

On the Project Templates section of the New CCS project wizard, select the
“evm6472: MessageQ” template. This example shows how to use IPC’s
MessageQ module with UIA. The same image must be loaded on all cores.

The RTSC Configuration Settings page of the wizard automatically has the
correct RTSC Target, Platform, and Build-Profile set.

After creating the project, examine the message.c and message.cfg files.

In the message.c file, notice two calls to Log_write2() in tsk0_func(), which runs
only on CORE0. The calls to Log_write2() pass events of UIABenchmark_start
and UIABenchmark_stop types. These are used to bracket the code that uses
MessageQ to send and receive a message from a remote processor.

In the message.cfg file, notice that the LoggingSetup module is configured to use
the UploadMode_NONJTAGTRANSPORT mode. This mode uses Ethernet as
the default transport to move Log records to CCS via the UIA ServiceMgr
framework. This example configures the ServiceMgr module to use a multi-core
topology. All the cores route their data to the ServiceMgr module running on
Linux. The configuration also contains a section that configures the NDK, which
is used by the Ethernet transport.

UIA ships pre-built EVM6472 Ethernet drivers. The libraries are in the
<uia_install>\packages\ti\uia\examples\evm6472\ndkdrivers directory. These
libraries were copied out of the PDK_1_00_00_05 package. This was done to
make building the examples easier.

Within the configuration file of EVM6472 example, the following line gets the pre-
built Ethernet libraries and includes them in the build. If you have an updated
PDK, simply remove this statement and add the libraries into the project (or
follow the instructions with the PDK).

var ndkdrivers =
 xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

Note that the NDK currently supports only the COFF format.

You can use the following System Analyzer features when running this example:
CPU Load, Task Load, Execution Graph, Duration, and Context Aware Profile.

14

3.2 Notes for EVMTI816x SimpleTask Project Templates

On the Project Settings page of the New CCS project wizard, be sure to select
the correct Device Variant (e.g. C674X or CortexM3).

On the Project Templates page of the New CCS project wizard, select one of the
“evmti816x: SimpleTask” templates. These examples use LoggerCircBuf or
LoggerSM (shared memory) to log benchmark events. Different projects are
provided for the DSP, video M3, and vpss M3.

On the RTSC Configuration Settings page of the wizard, make sure to check the
box for SysLink package in the Products and Repositories list. Use the Add
button to add the repository if it is not shown.

The RTSC Configuration Settings page of the wizard automatically has the
correct RTSC Target, Platform, and Build-Profile set. For example:

After creating the project, examine the simpleTask.c and *.cfg files.

In the simpleTask.c file, notice the two calls to Log_write1() in the taskLoad()
function. The calls to Log_write1() pass event types of UIABenchmark_start and
UIABenchmark_stop. These are used to bracket the code that reverses the bits
in a buffer.

The configuration filename depends on the core and the logger implementation.
For example, for the LoggerCircBuf version of the DSP application, the
configuration file is called dspLoggerCircBuf.cfg. All versions of the configuration
files for these examples include the simpleTask.cfg.xs configuration file. This
shared file configures Clock, Semaphore, and Task objects. It also configures
IPC and the shared memory region.

The non-shared configuration files cause the LoggingSetup module to use the
UploadMode_NONJTAGTRANSPORT mode. This mode uses Ethernet as the
default transport to move Log records to CCS via the UIA ServiceMgr framework.
This example configures the ServiceMgr module to use a multi-core topology.

You can use the following System Analyzer features with these examples: CPU
Load, Task Load, Execution Graph, Duration, and Context Aware Profile.

The <uia_install>\packages\ti\uia\examples\evmti816x directory contains a
readme.txt file with details on how to run the example. The source code and a
Makefile to build the Linux application are also included in the
<uia_install>packages\ti\uia\examples\evmti816x directory.

15

3.3 Notes for Single-Core Stairstep Project Templates

On the Project Templates page of the New CCS project wizard, expand the
System Analyzer > Single-core Examples list and choose a “Stairstep”
template. These examples use Hwi, Swi, and Task threads run to add to the CPU
load of the system. This example periodically generates log events.

Each of the examples uses a different transport mode. These modes are
configured by setting the LoggingSetup.eventUploadMode parameter.

The following list provides notes that apply to specific versions of this example:

• Stairstep Ethernet. This template is configured for use on the EVM6472
with NDK. Within the configuration file, the following line gets the pre-built
Ethernet libraries and includes them in the build. If you have an updated PDK
or are using a different device, simply remove this statement and add the
libraries into the project (or follow the instructions with the PDK). See Section
3.1 for more about using the NDK with an application for the EVM6472.

 var ndkdrivers =
 xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

• Stairstep JTAG RunMode. This mode is only supported on CPUs that
support real-time JTAG access. This support is provided on the C64x+ and
C66x CPUs. When the UploadMode_JTAGRUNMODE is used, the UIA
ServiceMgr framework and NDK are not used.

• All other Stairstep templates. The JTAG StopMode, ProbePoint, and
Simulator templates are not-platform specific. These templates do not use
the UIA ServiceMgr framework or the NDK.

In the Stairstep example, the cpuLoadInit() function gets the CPU frequency and
fills arrays with load values corresponding to 0, 25, 50, 75, and 95 percent CPU
loads. The timerFunc() function is a Hwi thread that runs every 100ms to launch
a Hwi, Swi, and Task thread. Each thread then performs a doLoad() function
before relinquishing the CPU. After staying at each load setting for 5 seconds,
timerFunc() calls the step() function to advance to the next set of Hwi, Swi, and
Task load values. The cycle repeats after reaching the 95 percent load.

You can use the following System Analyzer features when running these
examples: CPU Load, Task Load, and Execution Graph.

3.4 Notes for System Analyzer Tutorial Project Templates

You can create projects using the System Analyzer and UIA tutorials.

• Tutorial 1: This template is intended for use on a C64x+ or C66x simulator.
This tutorial shows how to log errors, warnings, and informational events,
benchmark code, and control which events are logged. Refer to
http://processors.wiki.ti.com/index.php/McsaTutorial1 for details.

http://processors.wiki.ti.com/index.php/McsaTutorial1

16

• Tutorial 2: This template is intended for use on a C64x+ or C66x emulator.
This tutorial shows how to log data that can be graphed and analyzed for
minimum, maximum, and average statistics. Refer to
http://processors.wiki.ti.com/index.php/McsaTutorial2 for details.

Additional tutorials will be provided online and as updates. See
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials.

3.5 For More Information

To learn more about System Analyzer and the software products used with it,
refer to the following documentation:

• UIA online reference help (also called "CDOC"). Open with CCSv4 online
help or run <uia_install>/docs/cdoc/index.html. Use this help system to get
reference information about static configuration of UIA modules and C
functions provided by UIA. Notice that links to CDOC topics are shown in
green in the System Analyzer help.

• TI Embedded Processors Wiki. http://processors.wiki.ti.com

 System Analyzer.
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer

 Code Composer Studio.
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5

 SYS/BIOS. http://processors.wiki.ti.com/index.php/Category:SYSBIOS

 NDK. http://processors.wiki.ti.com/index.php/Category:NDK

 SysLink. http://processors.wiki.ti.com/index.php/Category:SysLink

• RTSC-Pedia Wiki. http://rtsc.eclipse.org/docs-tip for XDCtools
documentation.

• TI E2E Community. http://e2e.ti.com/

 For CCS and DVT information, see the Code Composer forum at
http://e2e.ti.com/support/development_tools/code_composer_studio/f/81.aspx

 For SYS/BIOS, XDCtools, IPC, NDK, and SysLink information, see the
SYS/BIOS forum at http://e2e.ti.com/support/embedded/f/355.aspx

 Also see the forums for your specific processor(s).

• SYS/BIOS 6.x Product Folder.
http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html

• Embedded Software Download Page.
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html
for downloading SYS/BIOS, XDCtools, IPC, and NDK versions.

http://processors.wiki.ti.com/index.php/McsaTutorial2
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://processors.wiki.ti.com/index.php/Category:NDK
http://processors.wiki.ti.com/index.php/Category:SysLink
http://rtsc.eclipse.org/docs-tip
http://e2e.ti.com/
http://e2e.ti.com/support/development_tools/code_composer_studio/f/81.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html

17

Chapter 4

Capturing Live Data in a Sample Project

This chapter walks you through the process of creating, building, and running a
sample project to capture live data with System Analyzer. This example uses a
simulator with the JTAG Stop mode, so you do not need any special hardware in
order to follow the steps in this example. If you have a hardware device that is
supported by System Analyzer, you can use that device instead of the simulator
when using this example.

18

4.1 Creating the Project

Follow these steps in CCS v5.2 to create this sample project:

1) Start Code Composer Studio 5.2.

2) Choose File > New > CCS Project from the menus.

3) On the CCS Project page, type Stairstep_Sample as the Project name.
Make sure the Use default location checkbox is checked.

4) Select C6000 as the Device Family and Generic C64x+ Device as the
Variant.

5) In the Project Templates area, expand the System Analyzer (UIA) item and
the Single-core Examples category. Select Stairstep JTAG StopMode.

19

6) Click Next.

7) On the RTSC Configuration Settings page, select the software versions you
want to use. These instructions were tested with System Analyzer 1.1,
XDCtools 3.23.02, SYS/BIOS 6.33.04, and IPC 1.24.02.

8) Make sure the RTSC Target is set to ti.targets.C64P.

9) Click on the Platform box and wait for the list of available platforms to be
generated. Then click the drop-down arrow to the right of the edit box and
select ti.platforms.evm6472. This will allow the project to run on either the
6472 EVM or the 6472 simulator depending on your target configuration.

10) Make sure the Build-profile is set to release. (Use whole_program if you
are using SYS/BIOS 6.31.)

11) Click Finish. This creates a project with the name you specified in your CCS
workspace.

4.2 Modifying the C Source Code

Examine and modify the C source code as follows:

1) In CCS, make sure you are in the CCS Edit perspective. (You can select a
perspective using the buttons in the upper-right corner of the main CCS
window.)

2) Expand the project in the C/C++ Project View to see the files it contains.

20

3) Double-click on the stairstep.c file to open it in the CCS editor.

4) If you will be running this example with the simulator, change 5 on line 261 of
the file to 0.5 to speed the load changes up by a factor of 10. The resulting
line should be as follows:

 if (++tickCount >= (0.5 * NUMPERSEC)) {

5) Examine the functions described in the following list.

6) When you have finished examining the source code, save and close the
stairstep.c file.

• main() prints a log message and runs the cpuLoadInit() function. It then runs
SYS/BIOS’s BIOS_start() function, which must be run by all SYS/BIOS
programs to enable the modules and start the thread scheduling.

• cpuLoadInit() is run by main() before the SYS/BIOS scheduler starts. It
calculates step-wise load settings to be used for the Hwi, Swi, and Task
threads based on the frequency at which the CPU runs and some constants
set earlier in the source file. The resulting load values are stored in the
hwiLoadValue[], swiLoadValue[], and taskLoadValue[] arrays.

• timerFunc() is run every 100 ms in response to the hardware timer. Every 5
seconds, it runs the step() function to move to the next set of load levels. The
timerFunc() function runs in the context of a Hwi thread to schedule a Swi
and Task thread and to run the hwiLoad() function. When timerFunc()
completes, the Swi thread can run and the “sem” Semaphore it posts allows
the Task thread to run. If those threads complete before 100 ms has elapsed,
the application drops into the Idle thread until this function is triggered again.

• step() is run every 5 seconds to move to the next set of load levels in the
hwiLoadValue[], swiLoadValue[], and taskLoadValue[] arrays. When it
reaches the end of the array, it resets to the beginning.

• hwiLoad() is run by timerFunc() in the context of a Hwi thread. It prints the
new load value if it has been changed by the step() function. It then passes
the current Hwi load value to the doLoad() function.

• swiLoad() is run by the “swi” Swi object, which is created in the configuration
file. It prints the new load value if it has been changed by the step() function.
It then passes the current Swi load value to the doLoad() function.

• taskLoad() is run by the “taskLoadTask” Task object, which is created in the
configuration file. It pends on the “sem” Semaphore so that the Task cannot
run again until the Semaphore is posted by the timerFunc() function. It prints
the new load value if it has been changed by the step() function. It then
passes the current Task load value to the doLoad() function.

• doLoad() is run by the Hwi, Swi, and Task threads in this example. It spins in
a do loop until the timestamp has been incremented by the amount required
to consume the desired CPU load.

21

4.3 Modifying the Configuration File

Examine and modify the configuration file as follows. The modifications cause the
application to log additional events for analysis.

1) Double-click the stairstep_JTAGStopMode.cfg configuration file. By default,
double-clicking opens the XGCONF configuration file editor.

Note: These instructions were written for use with SYS/BIOS 6.33. If you are
using SYS/BIOS 6.31 or higher, XGCONF has a spreadsheet-link interface
for setting properties.

2) Look at the configurations of the following instances, which are used by the
stairstep.c source file:

• sem. The timerFunc() function posts this Semaphore to allow the
taskLoadTask to run. When the taskLoadTask runs, it pends on this
Semaphore so the task cannot run again until the Semaphore is posted.

• swi. This Swi instance runs the swiLoad() function once when it is
posted by the timerFunc() function.

• taskLoadTask. This Task instance runs the taskLoad() function when it
is scheduled by posting the Semaphore.

• timer0. This Timer runs the timerFunc() function once every 100 ms.

3) Notice that the ti.uia.sysbios.LoggingSetup module is used by this
application. This enables UIA event logging to be sent to the System
Analyzer features.

4) In the Outline pane, select the LoggingSetup module.

5) In the center pane, check the Enable Swi logging box.

22

6) If you are using SYS/BIOS 6.32.01 or higher, choose the BIOS module in the
Outline view. Choose the Runtime view. Set the SYS/BIOS library type to
“custom”. (This setting is required in order to allow you to enable Swi and
Hwi load monitoring.) If you are using the Advanced view instead of the
Runtime view, set the libType property to LibType_Custom.

7) In the Available Products list, type Load in the “type filter text” field just
below the Available Products title. You should see the SYS/BIOS tree
expanded to show the Realtime Analysis > Load module.

8) Right-click on the Load module and choose Use Load.

23

9) In the center pane for the CPU Load Monitor module, make sure that all the
boxes are checked in the Module view. (Or, in the Advanced view, set the
swiEnabled and hwiEnabled properties to true.)

10) Press Ctrl+S to save your changes to the configuration file. Changes are
validated when you save so that any errors are shown in the Problems view
before you build the project.

4.4 Building the Project

Follow these steps to build the sample project:

1) Right-click on the project in the C/C++ Projects pane, and select Build
Project from the context menu.

2) Watch the progress of the build in the Console area. (You can run the build in
the background if you like.) When the build is finished, the Console area
should say "Finished building target: Stairstep_Sample.out" to indicate that
the project was built successfully.

In addition to compiling and linking the C source file, the build also processes
the *.cfg configuration file using XDCtools. Since the default configuration of
the project is "Debug", the files generated from the configuration are stored in
the project's Debug\configPkg folder.

24

4.5 Debugging the Project

To debug the application, follow these steps:

1) In CCS, choose File > New > Target Configuration File.

2) In the Target Configuration dialog, type C6472sim.ccxml as the File name.
You can use the default location of the project directory.

3) Click Finish.

4) In the Basic tab, select Texas Instruments Simulator as the Connection
and type 6472 as the Device filter.

5) Select the C6472 Device Cycle Accurate Simulator, Little Endian device.

6) Click Save.

7) Choose View > Target Configurations in CCS.

8) In the Target Configurations pane, expand the Projects > Stairstep_Sample
list to see your target configuration. (If you chose to use a shared location for
the target configuration, expand the User Defined list.)

25

9) Right-click on C6678sim.ccxml and choose Set as Default from the menu.

10) Right-click on C6678sim.ccxml and choose Launch Selected
Configuration from the context menu.

11) In the C/C++ Projects list, expand the Binaries node. Right-click on the *.out
file that was built. Choose Debug As > Code Composer Debug Session.

12) In the Launching Debug Session dialog, remove checkmarks next to any
cores you don’t want to run. Since simulators are significantly slower than a
hardware device, you may want to use only one core. Click OK.

13) Switch to the CCS Debug perspective if CCS doesn’t switch perspectives
automatically. If you don’t see the Debug pane, choose View > Debug from
the CCS menus. You can close any views you don’t need for debugging.

26

4.6 Capturing System Analyzer Data with the Project

The program runs to the beginning of main(). Follow these steps to capture event
data using System Analyzer:

1) Choose Tools > System Analyzer > Live in the menus.

2) In the Live Parameters dialog, use the following settings:

27

 Notice that since you are running a debugging session, System Analyzer can
get information about the cores and transports from the debugging session.

3) Choose the views checked in the previous figure for the Task Load and
Execution Graph analysis features. (The program is not yet instrumented to
log events used in the Context Aware Profile, Duration, and Count Analysis
features.)

4) Since you are using JTAG stop-mode, make sure you choose to collect data
Until data transfer is manually paused.

5) Click Start.

6) Right-click on each core that has the program loaded in the Debug area, and
choose Resume from the context menu.

7) Let the program run for a while.

 Note: If you are using a simulator, you may need to run the program for
several hours in order to get enough data to see the stairstep pattern in the
load graphs. If you just want to see some events in the System Analyzer Live
Session: Logs view, about 7 events will be generated within a few minutes.

8) Right-click on the cores that are running in the Debug area, and choose
Suspend from the context menu. Events are passed to the System Analyzer
views and processed when you suspend execution because you are using
JTAG stop-mode.

9) You can continue using Resume and Suspend to collect more events.

 Note: You can ignore warnings about a dropped interrupt that begin to occur
as the CPU load increases.

28

4.7 Analyzing System Analyzer Data

Follow these steps to examine the event data you collect using System Analyzer:

1) In the System Analyzer Live Session: Logs view, notice that you can click
on the headings to sort the events by any column. See the System Analyzer
User’s Guide (SPRUH43) for information about using special features in this
view, such as finding and filtering events, synchronizing with other views, and
bookmarking events.

2) Look at the Task Load: Graph view. If you have collected events for several
hours with the simulator (much less time with a hardware target), you see a
stairstep pattern that shows the Hwi thread first being set to increasing loads,
then the Swi thread, then the Task thread. Finally, all threads are set to loads
that increase up to a total of 75% of the CPU.

 Notice that you can highlight different threads by clicking on the thread
names in the legend above the graph.

3) Look at the Task Load: Summary and Task Load: Detail views. The
summary give the minimum, maximum, and average loads reported for each
of the threads. The detail view shows all events that report a thread or CPU
load.

29

4) Look at the Execution Graph. Click on the core name, C64+_0.OS, to
expand that item into separate threads. If you are running the application on
multiple cores, there is a separate item for each core. Zoom in several times
so that you can see the threads as more than vertical lines. If you let the
application run until all threads are loaded at once, the execution graph looks
similar to the following:

5) You can also choose Tools > ROV to open the ROV tool, which lets you
examine the status of SYS/BIOS, XDCtools, and UIA modules and objects
when the target is suspended.

6) To learn about using the System Analyzer analysis features, see the System
Analyzer online help in CCS or the System Analyzer User’s Guide
(SPRUH43), which is linked to by the
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer wiki
page.

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications
using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design
and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by
all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such
use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Amplifiers amplifier.ti.com Audio www.ti.com/audio

Data Converters dataconverter.ti.com Automotive www.ti.com/automotive

DLP® Products www.dlp.com Broadband www.ti.com/broadband

DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol

Clocks and Timers www.ti.com/clocks Military www.ti.com/military

Interface interface.ti.com Optical Networking www.ti.com/opticalnetwork

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Telephony www.ti.com/telephony

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless

RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated

http://amplifier.ti.com/
http://www.ti.com/audio
http://dataconverter.ti.com/
http://www.ti.com/automotive
http://www.dlp.com/
http://www.ti.com/broadband
http://dsp.ti.com/
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/military
http://interface.ti.com/
http://www.ti.com/opticalnetwork
http://logic.ti.com/
http://www.ti.com/security
http://power.ti.com/
http://www.ti.com/telephony
http://microcontroller.ti.com/
http://www.ti.com/video
http://www.ti-rfid.com/
http://www.ti.com/wireless
http://www.ti.com/lprf
http://e2e.ti.com/

	System Analyzer v1.1 Getting Started Guide
	About System Analyzer
	Exploring System Analyzer With Captured Data
	2.1 Exploring the CPU Load
	2.2 Exploring the Execution Graph
	2.3 Exploring the Concurrency Analysis
	2.4 Exploring the Task Profiler
	2.5 Exploring the Duration Analysis
	2.6 Exploring the Context Aware Profile

	Creating Sample Projects
	3.1 Notes for EVM6472 MessageQ Project Template
	3.2 Notes for EVMTI816x SimpleTask Project Templates
	3.3 Notes for Single-Core Stairstep Project Templates
	3.4 Notes for System Analyzer Tutorial Project Templates
	3.5 For More Information

	Capturing Live Data in a Sample Project
	4.1 Creating the Project
	4.2 Modifying the C Source Code
	4.3 Modifying the Configuration File
	4.4 Building the Project
	4.5 Debugging the Project
	4.6 Capturing System Analyzer Data with the Project
	4.7 Analyzing System Analyzer Data

