
System Analyzer User’s Guide

Literature Number: SPRUH43B
July 2011

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and
deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject
to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related require-
ments concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-
related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against
any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection
with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-
designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Communications & Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers & Peripherals www.ti.com//computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy & Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics, & Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation & Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless www.ti.com/wireless

RF/IF & ZigBee® Solutions www.ti.com/lprf TI E2E Community e2e.ti.com

This is a draft version printed from file: pref.fm on July 13, 2011
Preface

About This Guide

System Analyzer is a tool suite that provides visibility into the real-time
performance and behavior of your software. It allows you to analyze the
load, execution sequence, and timing of your single-core or multicore
target applications. System Analyzer is made up of a number of
components. Two key components of System Analyzer are:

❏ DVT. Various features of DVT provide the user interface for System
Analyzer within Code Composer Studio (CCS).

❏ UIA. The Unified Instrumentation Architecture (UIA) target package
defines APIs and transports that allow embedded software to log
instrumentation data for use within CCS.

This document provides information about both the host-side and target-
side components of System Analyzer.

Intended Audience

This document is intended for users of System Analyzer.

This document assumes you have knowledge of inter-process
communication concepts and the capabilities of the processors available
to your application. This document also assumes that you are familiar
with Code Composer Studio, SYS/BIOS, and XDCtools.

See Section 3.1, Different Types of Analysis for Different Users for more
about the categories of users for System Analyzer.
iii

 Notational Conventions
Notational Conventions

This document uses the following conventions:

❏ When the pound sign (#) is used in filenames or directory paths, you
should replace the # sign with the version number of the release you
are using. A # sign may represent one or more digits of a version
number.

❏ Program listings, program examples, and interactive displays are
shown in a mono-spaced font. Examples use bold for emphasis,
and interactive displays use bold to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Documentation Feedback

If you have comments about this document, please provide feedback at
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43.
This link is for reporting errors or providing comments about a technical
document. Using this link to ask technical support questions will delay
getting a response to you.

Trademarks

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, DaVinci, the DaVinci logo, XDS, Code Composer, Code
Composer Studio, Probe Point, Code Explorer, DSP/BIOS, SYS/BIOS,
RTDX, Online DSP Lab, DaVinci, eXpressDSP, TMS320,
TMS320C6000, TMS320C64x, TMS320DM644x, and TMS320C64x+.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

Linux is a registered trademark of Linus Torvalds.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

July 13, 2011
iv

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUH43

This is a draft version printed from file: uia_ugTOC.fm on July 13, 2011
Contents

1 Overview of System Analyzer .1-1
This chapter provides an introduction to System Analyzer’s host-side and target-side components.
1.1 Introduction. .1-2

1.1.1 What Analysis and Visualization Capabilities are Provided?1-2
1.1.2 What the UIA Target Software Package Provides .1-4

1.2 System Analyzer Terminology .1-5
1.3 Using System Analyzer with Your Application Software. .1-7

1.3.1 Instrumenting Your Application Using UIA .1-7
1.3.2 Capturing and Uploading Events Using UIA .1-7

1.4 How Does System Analyzer Communicate over Non-JTAG Transports?1-9
1.4.1 Communication for EVM6472 Single-Core .1-11
1.4.2 Communication for EVM6472 Multicore. .1-11
1.4.3 Communication for EVMTI816x .1-11
1.4.4 Communication for TCI6616 .1-11

1.5 About this User Guide .1-12
1.6 Learning More about System Analyzer .1-12

2 Installing System Analyzer .2-1
This chapter covers how to install the System Analyzer components.
2.1 System Analyzer Installation Overview .2-2
2.2 Installing System Analyzer as Part of a Larger Product .2-2
2.3 Installing System Analyzer as a Software Update .2-3
2.4 Installing and Using UIA Outside CCS .2-3

3 Tasks and Roadmaps for System Analyzer .3-1
This chapter explains how to begin using System Analyzer. It provides roadmaps for common
tasks related to using System Analyzer.
3.1 Different Types of Analysis for Different Users. .3-2
3.2 Analyzing System Loading with System Analyzer .3-4
3.3 Analyzing the Execution Sequence with System Analyzer. .3-6
3.4 Performing Count Analysis with System Analyzer .3-8
3.5 Benchmarking with System Analyzer .3-10
3.6 Troubleshooting System Analyzer Connections. .3-12

3.6.1 If You Cannot Connect to the Target with System Analyzer 3-12
3.6.2 If No Events are Shown in System Analyzer Features.3-12
v

 Contents
3.6.3 If System Analyzer Events are Being Dropped .3-13
3.6.4 If System Analyzer Packets are Being Dropped .3-13
3.6.5 If Events Stop Being Show Near the Beginning .3-13
3.6.6 If System Analyzer Events Do Not Make Sense .3-13
3.6.7 If Data is Not Correlated for Multicore System .3-14
3.6.8 If the Time Value is Too Large .3-14

3.7 Creating Sample System Analyzer Projects. .3-15
3.7.1 Notes for EVM6472 MessageQ Project Templates3-16
3.7.2 Notes for EVMTI816x SimpleTask Project Templates3-17
3.7.3 Notes for Single-Core Stairstep Project Templates3-18
3.7.4 Notes for System Analyzer Tutorial Project Templates3-19

3.8 Special Features of System Analyzer Data Views .3-20
3.8.1 Zoom (Graphs Only). .3-21
3.8.2 Measurement Markers (Graphs Only) .3-22
3.8.3 Bookmarks .3-23
3.8.4 Groups and Synchronous Scrolling .3-23
3.8.5 Find .3-24
3.8.6 Filter .3-26
3.8.7 Export .3-28
3.8.8 Cursor and Scroll Lock .3-29

4 Using System Analyzer in Code Composer Studio .4-1
This chapter describes the host-side analysis features provided in Code Composer Studio for ex-
amining instrumentation data sent to the host.
4.1 Overview of System Analyzer Features .4-2
4.2 Starting a Live System Analyzer Session. .4-3

4.2.1 Managing a System Analyzer Session. .4-6
4.2.2 Removing a System Analyzer Session .4-8

4.3 Configuring System Analyzer Transports and Endpoints .4-9
4.4 Opening CSV and Binary Files Containing System Analyzer Data 4-14

4.4.1 Opening a CSV File with System Analyzer .4-14
4.4.2 Opening a Binary File with System Analyzer .4-16

4.5 Using the Log View. .4-19
4.6 Opening System Analyzer Features. .4-23
4.7 Using the CPU Load View with System Analyzer. .4-28

4.7.1 Summary View for CPU Load .4-29
4.7.2 Detail View for CPU Load. .4-30
4.7.3 How CPU Load Works with System Analyzer .4-30

4.8 Using the Task Load View with System Analyzer .4-31
4.8.1 Summary View for Task Load .4-32
4.8.2 Detail View for Task Load .4-33
4.8.3 How Task Load Works with System Analyzer .4-34

4.9 Using the Execution Graph with System Analyzer .4-34
4.9.1 How the Execution Graph Works with System Analyzer4-35

4.10 Using the Count Analysis Feature with System Analyzer. .4-36
4.10.1 Detail View for Count Analysis .4-37
vi

Contents
4.10.2 Graph View for Count Analysis .4-39
4.10.3 How Count Analysis Works with System Analyzer.4-40

4.11 Using the Duration Feature with System Analyzer .4-41
4.11.1 Detail View for Duration Analysis .4-43
4.11.2 Graph View for Duration Analysis .4-44
4.11.3 How Duration Analysis Works with System Analyzer.4-45

4.12 Using Context Aware Profile with System Analyzer .4-46
4.12.1 Detail View for Context Aware Profile .4-48
4.12.2 Graph Views for Context Aware Profile .4-49
4.12.3 How Context Aware Profiling Works with System Analyzer4-50

5 UIA Configuration and Coding on the Target .5-1
This chapter describes how to configure and code target applications using UIA modules.
5.1 Quickly Enabling UIA Instrumentation .5-2

5.1.1 Using XGCONF to Enable UIA Instrumentation. .5-4
5.2 Configuring SYS/BIOS Logging .5-7

5.2.1 Enabling and Disabling Load Logging .5-7
5.2.2 Enabling and Disabling Event Logging. .5-8
5.2.3 More About Diags Masks .5-9
5.2.4 Setting Diags Masks at Runtime .5-10

5.3 Customizing the Configuration of UIA Modules .5-11
5.3.1 Configuring ti.uia.sysbios.LoggingSetup .5-11
5.3.2 Configuring ti.uia.services.Rta .5-15
5.3.3 Configuring ti.uia.runtime.ServiceMgr .5-17
5.3.4 Configuring ti.uia.runtime.LoggerCircBuf .5-20
5.3.5 Configuring ti.uia.runtime.LoggerSM .5-23
5.3.6 Configuring ti.uia.runtime.LogSync .5-28
5.3.7 Configuring IPC .5-32

5.4 Target-Side Coding with UIA APIs .5-33
5.4.1 Logging Events with Log_write() Functions .5-33
5.4.2 Enabling Event Output with the Diagnostics Mask.5-34
5.4.3 Events Provided by UIA .5-35
5.4.4 LogSnapshot APIs for Logging State Information .5-37
5.4.5 LogSync APIs for Multicore Timestamps .5-40
5.4.6 LogCtxChg APIs for Logging Context Switches .5-40
5.4.7 Rta Module APIs for Controlling Loggers .5-41
5.4.8 Custom Transport Functions for Use with ServiceMgr.5-42

6 Advanced Topics for System Analyzer .6-1
This chapter provides additional information about using System Analyzer components.
6.1 IPC and SysLink Usage .6-2
6.2 Linux Support for UIA Packet Routing .6-3
6.3 Rebuilding Sample Projects from the Command Line .6-5
6.4 Rebuilding Target-Side UIA Modules .6-6
6.5 Benchmarks .6-7

6.5.1 UIA Benchmarks for EVM6472 .6-7
6.5.2 UIA Benchmarks for EVMTI816x .6-8
vii

 Contents
viii

Chapter 1

Overview of System Analyzer

This chapter provides an introduction to System Analyzer’s host-side and
target-side components.

1.1 Introduction . 1–2

1.2 System Analyzer Terminology . 1–5

1.3 Using System Analyzer with Your Application Software 1–7

1.4 How Does System Analyzer Communicate over Non-JTAG Transports? 1–9

1.5 About this User Guide . 1–12

1.6 Learning More about System Analyzer . 1–12

Topic Page
1-1

Introduction
1.1 Introduction

Instrumenting software with print statements to provide visibility into the
operation of the software at run-time has long been one of the keys to
creating maintainable software that works. As devices become
increasingly complex, the system-level visibility provided by software
instrumentation is an increasingly important success factor, as it helps to
diagnose problems both in the lab during development and in the field.

One of the key advantages of instrumented software is that, unlike debug
sessions, the statements used are part of the code-base. This can help
other developers figure out what is going on as the software executes. It
can also highlight integration problems and error conditions that would be
hard to detect otherwise.

As a result, many groups create their own logging APIs. Unfortunately,
what often happens is that the logging APIs they create are closely tied
to particular hardware and operating systems, use incompatible logging
infrastructures, make assumptions about the acceptable amount of
memory or CPU overhead, generate logs in a diverse range of formats,
may not include timestamps, or may use different time-bases (ticks,
cycles, wall-clock, etc.). All of these differences make it difficult to port
code from one system to another, difficult to integrate software from
different development groups, difficult or impossible to correlate events
from different cores on the same device, and costly to create tooling to
provide ease-of-use, analysis and visualization capabilities.

The System Analyzer tool suite provides a consistent and portable way
to instrument software. It enables software to be re-used with a variety of
silicon devices, software applications, and product contexts. It includes
both host-side tooling and target-side code modules (the UIA software
package). These work together to provide visibility into the real-time
performance and behavior of software running on TI's embedded single-
core and multicore devices.

1.1.1 What Analysis and Visualization Capabilities are Provided?

The host-side System Analyzer tools use TI's Data Visualization
Technology (DVT) to provide the following features for target applications
that have been instrumented with the UIA target software package:

❏ Advanced analysis features for data analysis and visualization.
Features include the ability to view the CPU and thread loads, the
execution sequence, thread durations, and context profiling.

❏ Multicore event correlation. Allows software instrumentation
events from multiple cores on multicore devices to be displayed on
Overview of System Analyzer 1-2

Introduction
the same timeline, allowing users to see the timing relationships
between events that happened on different CPUs.

❏ Run-time analysis. For targets that support either the UIA Ethernet
transport or real-time JTAG transport, events can be uploaded from
the target to System Analyzer while the target is running without
having to halt the target. This ensures that actual program behavior
can be observed, without the disruption of program execution that
occurs when one or more cores are halted.

❏ Recording and playback of data. You can record real-time event
data and later reload the data to further analyze the activity. Both
CSV and binary files are supported by System Analyzer.
Overview of System Analyzer 1-3

Introduction
1.1.2 What the UIA Target Software Package Provides

For the target, the Unified Instrumentation Architecture (UIA) target
package, a component of System Analyzer, provides the following:

❏ Software instrumentation APIs. The xdc.runtime.Log module
provides basic instrumentation APIs to log errors, warnings, events
and generic instrumentation statements. A key advantage of these
APIs is that they are designed for real-time instrumentation, with the
burden of processing and decoding format strings handled by the
host. Additional APIs are provided by the ti.uia.runtime package to
support logging blocks of data and dynamic strings (the LogSnapshot
module), context change events (the LogCtxChg module), and
multicore event correlation information (the LogSync module).

❏ Predefined software events and metadata. The ti.uia.events
package includes software event definitions that have metadata
associated with them to enable System Analyzer to provide
performance analysis, statistical analysis, graphing, and real-time
debugging capabilities.

❏ Event loggers. A number of event logging modules are provided to
allow instrumentation events to be captured and uploaded to the host
over both JTAG and non-JTAG transports. Examples include
LoggerCircBuf, which logs events to a circular buffer in memory, and
LoggerSM, which logs events to shared memory and enables events
to be decoded and streamed to a Linux console window.

❏ Transports. Both JTAG-based and non-JTAG transports can be
used for communication between the target and the host. Non-JTAG
transports include Ethernet, with UDP used to upload events to the
host and TCP used for bidirectional communication between the
target and the host.

❏ SYS/BIOS event capture and transport. For example, when UIA is
enabled, SYS/BIOS uses UIA to transfer data about CPU Load, Task
Load, and Task Execution to the host.

❏ Multicore support. UIA supports routing events and messages
across a central master core. It also supports logging
synchronization information to enable correlation of events from
multiple cores so that they can be viewed on a common timeline.

❏ Scalable solutions. UIA allows different solutions to be used for
different devices.

❏ Examples. UIA includes working examples for the supported boards.

❏ Source code. UIA modules can be modified and rebuilt to facilitate
porting and customization.
Overview of System Analyzer 1-4

System Analyzer Terminology
1.2 System Analyzer Terminology

You should be familiar with the following terms when using this manual.

❏ System Analyzer. A suite of host-side tools that use data captured
from software instrumentation, hardware instrumentation, and CPU
trace to provide visibility into the real-time performance and behavior
of target applications.

❏ UIA. Unified Instrumentation Architecture. A target-side package that
provides instrumentation services.

❏ DVT. Data Visualization Technology. Provides a common platform to
display real-time SYS/BIOS and trace data as lists and graphically.
Used in the System Analyzer features. Also used in such CCS
features as STM Logic and Statistics Analyzer and Trace Analyzer.

❏ CCS. Code Composer Studio. The integrated development
environment (IDE) for TI's DSPs, microcontrollers, and application
processors.

❏ Analysis Feature. A System Analyzer tool provided by DVT for use
in the analysis of instrumentation data. A feature typically consists of
several related views. For example, "CPU Load" is an Analysis
Feature that includes summary, detail, and graph views.

❏ Core. An embedded processor. Also called a CPU.

❏ Host. The processor that communicates with the target(s) to collect
instrumentation data. For example, a PC running Code Composer
Studio.

❏ Target. A processor running target code. Generally this is an
embedded processor such as a DSP or microcontroller.

❏ UIA Packets. Generic term for either Events or Messages. A UIA
packet can hold multiple events or a single message.

❏ Events. Instrumentation data sent from the target to the host For
example, Log records.

❏ Messages. Actions that are sent between the host and target. For
example, commands, acknowledgements, and results.

❏ Service. A component that supplies some type of host/target
interaction. There can be multiple services in a system. An example
is the Rta Service that provides XDC Log information.

❏ IPC. Inter-Processor Communication. A software product containing
modules designed to allow communication between processors in a
multi-processor environment.
Overview of System Analyzer 1-5

System Analyzer Terminology
❏ JTAG. Joint Test Action Group. IEEE specification (IEEE 1149.1) for
a serial interface used for debugging integrated circuits.

❏ MADU. Minimum Addressable Data Unit. Also called MAU. The
minimum sized data that can be accessed by a particular CPU.
Different architectures have different size MADUs. For the C6000
architecture, the MADU for both code and data is an 8-bit byte.

❏ NDK. Network Developer’s Kit. Contains libraries that support the
development of networking applications.

❏ SYS/BIOS. A real-time operating system for a number of TI's DSPs,
microcontrollers, and application processors. Previously called DSP/
BIOS.

❏ SysLink. Run-time software and an associated porting kit to simplify
the development of embedded applications in which either General-
Purpose microprocessors (GPPs) or DSPs communicate with each
other.

❏ RTSC. Real-Time Software Components. A standard for packaging
and configuring software components. XDCtools is an
implementation of the RTSC standard.

❏ UART. Universal Asynchronous Receiver/Transmitter. A UART chip
controls the interface to serial devices.

❏ XDCtools. A product that contains tools needed to create, test,
deploy, install, and use RTSC components. RTSC standardizes the
delivery of target content.

❏ xdc.runtime. A package of low-level target-software modules
included with XDCtools that provides "core" services appropriate for
embedded C/C++ applications, including real-time diagnostics,
concurrency support, memory management, and system services.
Overview of System Analyzer 1-6

Using System Analyzer with Your Application Software
1.3 Using System Analyzer with Your Application Software

System Analyzer provides flexible ways to instrument your application
and to configure how logged events are uploaded to the host.

1.3.1 Instrumenting Your Application Using UIA

There are a number of different ways to take advantage of the real-time
visibility capabilities provided by System Analyzer and the UIA target
software:

❏ SYS/BIOS modules provide built-in software instrumentation that can
be enabled to provide visibility into CPU Load, Task Load, and Task
Execution "out of the box". (See Section 3.2 and Section 3.3).

❏ The UIA and xdc.runtime.Log APIs can be used in your C or C++
code directly to log software events to instrument your application
code. You don't have to write RTSC modules; just #include the
appropriate header files in your software and call the provided APIs.
Examples are provided in Section 5.4 as well as in the help files that
ship with the UIA target content.

❏ Macros can be used to wrap the UIA and XDC event logging APIs so
that they can be called using the same API signature as other event
logging APIs your software may already be using for software
instrumentation. More information is provided on the wiki page at
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer.

1.3.2 Capturing and Uploading Events Using UIA

UIA allows you to configure the infrastructure used to capture and upload
software instrumentation events without having to change your
application software C code. The LoggingSetup module in the
ti.uia.sysbios package provides the following eventUploadMode
configuration options, which can be configured by adding a couple of
script statements or settings in XGCONF:
Overview of System Analyzer 1-7

http://processors.wiki.ti.com/index.php/System_Analyzer
http://processors.wiki.ti.com/index.php/System_Analyzer
http://processors.wiki.ti.com/index.php/System_Analyzer

Using System Analyzer with Your Application Software
Table 1–1 Event Upload Modes

For details about the benefits and constraints for each of these modes,
see Configuring the Event Upload Mode, page 5-11.

Other Communication Options

❏ Specialized Logger. Logger modules can implement a host-to-
target connection in various ways. For example, the LoggerSM
module provided with UIA uses shared memory reads and writes to
directly communicate with a Linux application.

❏ UIA ServiceMgr Framework. UIA provides a full-featured pluggable
framework. It supports both default SYS/BIOS instrumentation and
extensive custom instrumentation. Communication via Ethernet, files
over JTAG, and other methods can be plugged into this framework.
The advantage of this technique is its power and flexibility. The
disadvantage is that the code and data footprint on the target may be
too large for memory-constrained targets. More information is
provided in Section 1.4.

Note: UIA does not support RTDX (Real-Time Data eXchange). Please use
JTAG Run-Mode instead.

Mode Description

Simulator Events are uploaded from the simulator at the time the event is
logged. Uses the same infrastructure as Probe Point event
upload.

Probe Point Events are uploaded over JTAG at the time the event is logged.
The target is briefly halted while the event is uploaded.

JTAG Stop-Mode Events are uploaded over JTAG when the target halts. This is the
default.

JTAG Run-Mode Events are streamed from the target to the host via JTAG while the
target is running. (For UIA 1.0, this is only available on C6X tar-
gets).

Non-JTAG Transport Events are uploaded over a non-JTAG transport such as Ethernet.
Overview of System Analyzer 1-8

How Does System Analyzer Communicate over Non-JTAG Transports?
1.4 How Does System Analyzer Communicate over Non-JTAG Transports?

UIA manages communication between the target(s) and the host by
providing a ServiceMgr module that is responsible for sending and
receiving packets between the services on the target and the host.

The following is simplified diagram of the components and connections
involved in single-core target applications. The numbers correspond to
the items in the numbered list after the diagram.

1) Host. The host is typically a PC running Code Composer Studio.
Within CCS, the System Analyzer features provided by DVT (the "i"
icons in the diagram) display and make sense of the UIA packets
received via the socket connection.

2) Target application. The target runs an application that uses SYS/
BIOS and/or XDCtools for configuration and APIs. Internally, the
SYS/BIOS modules make API calls to log events related to
threading. You can also add additional configuration and calls to
make use of the logging, event-handling, and diagnostics support in
UIA, SYS/BIOS, and XDCtools.

3) Rta service. UIA’s Rta module on the target collects events from the
log written to by both the pre-instrumented SYS/BIOS threads and
any custom instrumentation you have added. By default, it collects
Overview of System Analyzer 1-9

How Does System Analyzer Communicate over Non-JTAG Transports?
events every 100 milliseconds. Rta then sends the events on to the
UIA ServiceMgr module.

4) ServiceMgr module. This module moves data off the target primarily
in the background. You configure the ServiceMgr module to specify
the following:

■ Whether you have a single-core or multicore application.

■ If you have a multicore application, which core is designated the
master core, which communicates directly with the host.

■ The type of physical connection used for data transport between
the master core and the host. Options are Ethernet, file (over
JTAG), and user-defined (for custom connections).

5) Transport. By default, TCP is used to transport messages and UDP
is used to transport events over an Ethernet connection. The
application is responsible for setting up the Ethernet connection, for
example by using the NDK on an EVM6472.

If there are multiple cores, the simplified diagram of the connections looks
similar to the following:

In the multicore case, the ServiceMgr module on each core is configured
to identify the master core. UIA packets from other cores are sent to the
master core by the ServiceMgr module via the MessageQ module, which
is part of both IPC and SYSLink.
Overview of System Analyzer 1-10

How Does System Analyzer Communicate over Non-JTAG Transports?
The master core sends the UIA packets on to the host via the Ethernet
transport in the case of a master core that runs a SYS/BIOS application
and via standard Linux socket calls in the case of an ARM master core.

1.4.1 Communication for EVM6472 Single-Core

If the target application runs on a single-core EVM6472, the ServiceMgr
module on the target uses NDK as its transport. The NDK communicates
with the host via sockets. The NDK transport functions are in the
ti.uia.sysbios.TransportNdk module provided with UIA. See the
<uia_install>\packages\ti\uia\sysbios directory.

1.4.2 Communication for EVM6472 Multicore

If the target application is running on multiple cores on an EVM6472, all
non-master cores communicate to the “master” core via IPC’s MessageQ
module.

The ServiceMgr module on the master core communicates with the host
by using NDK as its transport. The NDK communicates with the host via
sockets. The NDK transport functions, which are only used by the master
core, are in the ti.uia.sysbios.TransportNdk module provided with UIA.
See the <uia_install>\packages\ti\uia\sysbios directory.

1.4.3 Communication for EVMTI816x

If the target application is running on the ARM, DSP, and M3 cores of an
EVMTI816x, the ServiceMgr module is used on all cores. The ARM core
is configured to be the master core. The DSP and M3 cores communicate
with the ARM core via SysLink’s MessageQ module. The ARM core
communicates with the host via standard Linux socket calls. That is, the
ARM core acts as a router for the UIA packets.

1.4.4 Communication for TCI6616

In the TCI6616 simulator the ti.uia.sysbios.TransportNyquistSim module
provided with UIA uses WinPcap to send UIA packets to the host. See
the release notes for the simulator for details. See the
<uia_install>\packages\ti\uia\sysbios directory.

When the hardware is available, the ServiceMgr module on the master
core will communicate with the host by using NDK as its transport.
Overview of System Analyzer 1-11

About this User Guide
1.5 About this User Guide

The remaining chapters in this manual cover the following topics:

❏ Chapter 2, "Installing System Analyzer", describes how to install the
System Analyzer components.

❏ Chapter 3, "Tasks and Roadmaps for System Analyzer“, explains
how to begin using System Analyzer.

❏ Chapter 4, “Using System Analyzer in Code Composer Studio“,
describes the analysis features provided in Code Composer Studio
for examining instrumentation data.

❏ Chapter 5, “UIA Configuration and Coding on the Target“, describes
how to configure and code target applications using UIA modules.

❏ Chapter 6, “Advanced Topics for System Analyzer“, provides
additional information about using System Analyzer components.

Note: Please see the release notes in the installation before starting to use
System Analyzer. The release notes contain important information about
feature support, issues, and compatibility information.

1.6 Learning More about System Analyzer

To learn more about System Analyzer and the software products used
with it, refer to the following documentation:

❏ UIA online reference help (also called "CDOC"). Open with CCSv5
online help or run <uia_install>/docs/cdoc/index.html. Use this help
system to get reference information about static configuration of UIA
modules and C functions provided by UIA.

❏ Tutorials. http://processors.wiki.ti.com/index.php/
Multicore_System_Analyzer_Tutorials

❏ TI Embedded Processors Wiki. http://processors.wiki.ti.com

■ System Analyzer. http://processors.wiki.ti.com/index.php/
Multicore_System_Analyzer

■ Code Composer Studio. http://processors.wiki.ti.com/
index.php/Category:Code_Composer_Studio_v5

■ SYS/BIOS. http://processors.wiki.ti.com/index.php/
Category:SYSBIOS

■ NDK. http://processors.wiki.ti.com/index.php/Category:NDK

■ SysLink. http://processors.wiki.ti.com/index.php/
Category:SysLink
Overview of System Analyzer 1-12

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://processors.wiki.ti.com/index.php/Category:NDK
http://processors.wiki.ti.com/index.php/Category:SysLink
http://processors.wiki.ti.com/index.php/Category:SysLink
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
http://processors.wiki.ti.com/index.php/Category:Code_Composer_Studio_v5
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials

Learning More about System Analyzer
❏ RTSC-Pedia Wiki. http://rtsc.eclipse.org/docs-tip for XDCtools
documentation.

❏ TI E2E Community. http://e2e.ti.com/

■ For CCS and DVT information, see the Code Composer forum at
http://e2e.ti.com/support/development_tools/
code_composer_studio/f/81.aspx

■ For SYS/BIOS, XDCtools, IPC, NDK, and SysLink information,
see the SYS/BIOS forum at http://e2e.ti.com/support/embedded/
f/355.aspx

■ Also see the forums for your specific processor(s).

❏ SYS/BIOS 6.x Product Folder. http://focus.ti.com/docs/toolsw/
folders/print/dspbios6.html

❏ Embedded Software Download Page. http://software-dl.ti.com/
dsps/dsps_public_sw/sdo_sb/targetcontent/index.html for
downloading SYS/BIOS, XDCtools, IPC, and NDK versions.
Overview of System Analyzer 1-13

http://rtsc.eclipse.org/docs-tip
http://e2e.ti.com/support/development_tools/code_composer_studio/f/81.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://e2e.ti.com/support/embedded/f/355.aspx
http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html
http://focus.ti.com/docs/toolsw/folders/print/dspbios6.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/index.html
http://e2e.ti.com/

Learning More about System Analyzer
Overview of System Analyzer 1-14

Chapter 2

Installing System Analyzer

This chapter covers how to install the System Analyzer components.

2.1 System Analyzer Installation Overview . 2–2

2.2 Installing System Analyzer as Part of a Larger Product 2–2

2.3 Installing System Analyzer as a Software Update . 2–3

2.4 Installing and Using UIA Outside CCS . 2–3

Topic Page
2-1

System Analyzer Installation Overview
2.1 System Analyzer Installation Overview

System Analyzer support is available for the targets listed in the release
notes and at http://processors.wiki.ti.com/index.php/
Multicore_System_Analyzer. Specific example templates are provided
for multicore targets such as the evm6472 and the evmTI816x. In
addition, pre-built libraries are provided for a number of single-core
targets.

System Analyzer makes use of the following other software components
and tools, which must be installed in order to use System Analyzer. See
the release notes for the specific versions required for the target you are
using.

❏ Code Composer Studio (CCStudio) 5.1 or higher

❏ SYS/BIOS 6.32 or higher (installed as part of CCStudio)

❏ XDCtools 3.22 or higher (installed as part of CCStudio)

❏ IPC 1.23 or higher (version required depends on target)

❏ Code Generation Tools (version required depends on target)

❏ NDK required for evm6472

❏ PDK and simulator required for simTCI6616

❏ SysLink required for evmTI816x

2.2 Installing System Analyzer as Part of a Larger Product

System Analyzer and the components it requires are automatically
installed as part of the Code Composer Studio v5.1 installation. Other
installers, such as MCSDK, will also install System Analyzer. If you install
one of these packages, you do not need to perform additional installation
steps in order to make System Analyzer available.

System Analyzer and the components it requires will also be
automatically installed as part of the Code Composer Studio v5
installation in the near future. System Analyzer will also be available
through the CCS Update Installer.
Installing System Analyzer 2-2

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer

Installing System Analyzer as a Software Update
2.3 Installing System Analyzer as a Software Update

If you have installed CCSv5.1, you do not need to install System
Analyzer separately.

If you have CCSv5.0 and don’t want to upgrade to CCSv5.1 yet, you
can install a slightly older version of System Analyzer by following these
steps:

1) Choose Help > Install New Software from the CCS menus.

2) Click Add to the right of the Work with field.

3) In the Add Repository dialog, type "System Analyzer" as the Name.

4) In the Location field, type the following URL and then click OK:
http://software-dl.ti.com/dsps/dsps_public_sw/

sdo_ccstudio/MCSAv1

5) Check the box next to DVT, and click Next. (System Analyzer is
installed as part of the Data Visualization Technology component of
CCS.) Continue clicking Next as needed and accept the license
agreement as prompted.

6) Click Finish to install or update the DVT software component. When
the installation is complete, restart CCS as prompted.

2.4 Installing and Using UIA Outside CCS

You can also install the UIA target-side modules on a Linux machine for
use outside the CCS environment. On a Linux machine, you should unzip
the UIA target package in the same root directory where XDCtools and
SYS/BIOS are installed.
Installing System Analyzer 2-3

Installing and Using UIA Outside CCS
If you want to build applications with UIA modules outside of CCS, add
the UIA package path to your XDCPATH definition. The UIA package
path is the /packages subfolder of the UIA target-side installation. For
example, the package path may be the C:\Program Files\Texas
Instruments\uia_1_#_#_#\packages folder.
Installing System Analyzer 2-4

Chapter 3

Tasks and Roadmaps for System
Analyzer

This chapter explains how to begin using System Analyzer. It provides
roadmaps for common tasks related to using System Analyzer.

3.1 Different Types of Analysis for Different Users . 3–2

3.2 Analyzing System Loading with System Analyzer 3–4

3.3 Analyzing the Execution Sequence with System Analyzer 3–6

3.4 Performing Count Analysis with System Analyzer. 3–8

3.5 Benchmarking with System Analyzer . 3–10

3.6 Troubleshooting System Analyzer Connections 3–12

3.7 Creating Sample System Analyzer Projects . 3–15

3.8 Special Features of System Analyzer Data Views 3–20

Topic Page
3-1

Different Types of Analysis for Different Users
3.1 Different Types of Analysis for Different Users

A variety of users make use of System Analyzer, but different users
perform different types of analysis. To find tasks that apply to your needs,
choose the use case that matches your needs best from the following list:

1) Analyst for a deployed system. You have an existing system for
which you need a performance analysis. You do not need to know
about the actual target code, and are interested in using the GUI
features of System Analyzer to find answers about CPU utilization.
You will want to use the CPU Load and possibly the Task Load
analysis features.

2) Linux developer. You have a multicore application with Linux on the
master core and SYS/BIOS applications on other cores. You want
data about how the SYS/BIOS applications are running, but do not
want to modify these applications yourself. You should use the CPU
Load, Task Load, and Execution Graph analysis features.

3) SYS/BIOS application developer (simple case). You want to
analyze default information provided by SYS/BIOS, but do not want
to add custom instrumentation code. You may be adding support for
System Analyzer to a deployed application. You should use the CPU
Load, Task Load, and Execution Graph analysis features.

4) SYS/BIOS application developer (custom instrumentation). You
want to get additional information about threading and the time
required to perform certain threads. In addition to the CPU Load,
Task Load, and Execution Graph analysis features, you should use
the Duration and Context Aware Profile features.

5) SYS/BIOS application developer (custom communication). You
want to use System Analyzer on a multicore platform with a setup
that varies from the defaults. You may want to modify the transport or
modify the behavior of the ServiceMgr module.
Tasks and Roadmaps for System Analyzer 3-2

Different Types of Analysis for Different Users
The following table shows tasks that apply to users in the previous list.

Table 3-1. Task Roadmaps for Various Users

* A few SYS/BIOS configuration settings need to be modified and
applications need to be rebuilt in order to use System Analyzer. Users
who are not familiar with SYS/BIOS, should ask a SYS/BIOS application
developer to make the configuration changes described in Section 5.1.

To learn about the tasks that apply to your needs, see the following
sections:

❏ Load Analysis. This includes using the CPU Load and Task Load
analysis features. See Section 3.2 for a roadmap.

❏ Execution Sequence Analysis. This includes using the Execution
Graph analysis feature. See Section 3.3 for a roadmap.

❏ Benchmarking and Count Analysis. This includes using the
Context Aware Profile, Duration, and Count Analysis features. The
target code needs to be modified in order to perform this type of
analysis. See Section 3.5 for a roadmap.

❏ SYS/BIOS and UIA Configuration. This involves editing the *.cfg
configuration file for the target application either with a text editor or
with XGCONF in CCS. See Section 5.1 for the simple setup and
Section 5.3 for custom configuration.

❏ SYS/BIOS and UIA API Coding. You can add C code to your target
application to provide data to the Context Aware Profile and Duration
analysis features. You can also add code for custom instrumentation.
See Section 5.4 for details.

❏ Multicore IPC, NDK, or SysLink setup. See Section 5.3.3,
Configuring ti.uia.runtime.ServiceMgr, Section 5.3.6, Configuring
ti.uia.runtime.LogSync, Section 5.3.7, Configuring IPC, and
documentation for IPC, NDK, SysLink, etc.

User
Type

Load
Analysis

Execution
Sequence
Analysis

Benchmarking
and Count
Analysis

SYS/BIOS & UIA
Configuration

SYS/BIOS
& UIA API

Coding

Multicore IPC,
NDK, or

SysLink setup

1 Yes No No No * No No

2 Yes Yes No No * No Maybe

3 Yes Yes No Yes No No

4 Yes Yes Yes Yes Yes Maybe

5 Yes Yes Yes Yes Yes Yes
Tasks and Roadmaps for System Analyzer 3-3

Analyzing System Loading with System Analyzer
3.2 Analyzing System Loading with System Analyzer

You can use System Analyzer to perform CPU and Task load analysis on
SYS/BIOS applications.

❏ CPU Load is calculated on the target by SYS/BIOS and is based on
the amount of time spent in the Idle thread. That is, the CPU Load
percentage is the percent of time not spent running the Idle thread.

❏ Task Load is calculated on the target based on the amount of time
spent in specific Task threads and in the Hwi and Swi thread-type
contexts.

If configured to do so, the target application periodically logs load data on
the target and transports it to the host. This data is collected and
processed by System Analyzer, which can provide graph, summary, and
detailed views of this data.

Performing Load
Analysis

Follow these steps to perform load analysis for your application. Follow
the links below to see detailed instructions for a particular step.

Step 1: Update your CCS installation to include System Analyzer and
UIA if you have not already done so.

■ See Section 2.2, Installing System Analyzer as Part of a Larger
Product or

■ See Section 2.3, Installing System Analyzer as a Software
Update
Tasks and Roadmaps for System Analyzer 3-4

Analyzing System Loading with System Analyzer
Step 2: Configure your target application so that UIA logging is enabled.
Causing your application to use UIA’s LoggingSetup and Rta modules as
described in the first link below automatically enables logging of events
related to the CPU and Task load. You can skip the links to more detailed
information that follow if you just want to use the default configuration.

■ First, see Section 5.1, Quickly Enabling UIA Instrumentation.

■ For more details, see Section 5.2.1, Enabling and Disabling Load
Logging.

■ For even more details, see Section 5.3, Customizing the
Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system
that includes SYS/BIOS applications, the step above may have already
been performed by the application developer. If so, you can skip this step.

Step 3: If the application is not already loaded and running, build, load,
and run your application.

Step 4: Start a CCS Debugging session with a target configuration to
match your setup.

Step 5: Capture instrumentation data using System Analyzer. Note that
when you start a session, you can choose to also send the data to a file
for later analysis.

■ See Section 4.2, Starting a Live System Analyzer Session.

Step 6: Analyze data using the CPU Load and/or Task Load Analyzer.

■ See Section 4.7, Using the CPU Load View with System
Analyzer.

■ See Section 4.8, Using the Task Load View with System
Analyzer.

See Also ❏ Section 4.7.3, How CPU Load Works with System Analyzer

❏ Section 4.8.3, How Task Load Works with System Analyzer

❏ Section 3.8, Special Features of System Analyzer Data Views

❏ To troubleshoot data loss: Section 3.6.3, If System Analyzer Events
are Being Dropped
Tasks and Roadmaps for System Analyzer 3-5

Analyzing the Execution Sequence with System Analyzer
3.3 Analyzing the Execution Sequence with System Analyzer

You can use System Analyzer to perform execution sequence analysis
on SYS/BIOS applications. The execution sequence and start/stop
benchmarking events are shown in the Execution Graph.

If configured to do so, the target application periodically logs event data
on the target and transports it to the host. This data is collected and
processed by System Analyzer, which can provide a graph view of this
data.

Performing Execution
Sequence Analysis

Follow these steps to perform an execution sequence analysis for your
application. Follow the links below to see detailed instructions for a
particular step.

Step 1: Update your CCS installation to include System Analyzer and
UIA if you have not already done so.

■ See Section 2.2, Installing System Analyzer as Part of a Larger
Product or

■ See Section 2.3, Installing System Analyzer as a Software
Update

Step 2: Configure your target application so that UIA logging is enabled.
Causing your application to use UIA’s LoggingSetup and Rta modules as
described in the first link for this step automatically enables logging of
execution sequence events related to Task threads. You can enable
execution sequence events for Swi and Hwi threads (which are off by
default) as described at the second link. You can skip the links to more
detailed information if you just want to use the default configuration.

■ First, see Section 5.1, Quickly Enabling UIA Instrumentation.

■ For more details, see Section 5.2.2, Enabling and Disabling
Event Logging.

■ For even more details, see Section 5.3, Customizing the
Configuration of UIA Modules.
Tasks and Roadmaps for System Analyzer 3-6

Analyzing the Execution Sequence with System Analyzer
Note: If you are analyzing a deployed system or are integrating a system
that includes SYS/BIOS applications, the previous step may have already
been performed by the application developer. If so, you can skip this step.

Step 3: If the application is not already loaded and running, build, load,
and run your application.

Step 4: Start a CCS Debugging session with a target configuration to
match your setup.

Step 5: Capture instrumentation data using System Analyzer. Note that
when you start a session, you can choose to also send the data to a file
for later analysis.

■ See Section 4.2, Starting a Live System Analyzer Session.

Step 6: Analyze data using the Execution Graph.

■ See Section 4.9, Using the Execution Graph with System
Analyzer.

■ In addition to the Execution Graph, you may find the Count
columns in the CPU Load and Task Load summary views useful
for analyzing the execution sequence. See Section 4.7.1,
Summary View for CPU Load and Section 4.8.1, Summary View
for Task Load.

See Also ❏ Section 4.9.1, How the Execution Graph Works with System
Analyzer

❏ Section 3.8, Special Features of System Analyzer Data Views

❏ To troubleshoot data loss: Section 3.6.3, If System Analyzer Events
are Being Dropped
Tasks and Roadmaps for System Analyzer 3-7

Performing Count Analysis with System Analyzer
3.4 Performing Count Analysis with System Analyzer

You can use System Analyzer to perform count analysis on SYS/BIOS
applications. For example, you might want to use Count Analysis to
analyze how a data value from a peripheral changes over time. Or, you
might want to find the maximum and minimum values reached by some
variable or the number of times a variable is changed. The results are
shown in the Count Analysis feature.

In order to use this feature, you will need to add code to your target to log
data values for one or more sources. If you do this the target application
transports the data to the host. This data is collected and processed by
System Analyzer, which can provide graph, summary, and detailed views
of this data.

Performing Count
Analysis

Follow these steps to perform a count analysis for your application.
Follow the links below to see detailed instructions for a particular step.

Step 1: Update your CCS installation to include System Analyzer and
UIA if you have not already done so.

■ See Section 2.2, Installing System Analyzer as Part of a Larger
Product or

■ See Section 2.3, Installing System Analyzer as a Software
Update
Tasks and Roadmaps for System Analyzer 3-8

Performing Count Analysis with System Analyzer
Step 2: Configure your target application so that UIA logging is enabled.
Causing your application to use UIA’s LoggingSetup and Rta modules as
described in the first link for this step automatically enables logging of
execution sequence events related to Task threads. You can enable
execution sequence events for Swi and Hwi threads (which are off by
default) as described at the second link. You can skip the links to more
detailed information if you just want to use the default configuration.

■ First, see Section 5.1, Quickly Enabling UIA Instrumentation.

■ For more details, see Section 5.2.2, Enabling and Disabling
Event Logging.

■ For even more details, see Section 5.3, Customizing the
Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system
that includes SYS/BIOS applications, the previous step may have already
been performed by the application developer. If so, you can skip this step.

Step 3: Add code to your target application that logs the
UIAEvt_intWithKey event.

■ See Section 4.10.3, How Count Analysis Works with System
Analyzer.

Step 4: Build, load, and run your application.

Step 5: Start a CCS Debugging session with a target configuration to
match your setup.

Step 6: Capture instrumentation data using System Analyzer. Note that
when you start a session, you can choose to also send the data to a file
for later analysis.

■ Section 4.2, Starting a Live System Analyzer Session.

Step 7: Analyze data using the Count Analysis feature.

■ Section 4.10, Using the Count Analysis Feature with System
Analyzer.

■ If you want to perform statistical analysis on the primary and
auxiliary data values, export records from the Count Analysis
Detail view to a CSV file that can be opened with a spreadsheet.
To do this, right-click on the view and choose Data > Export All.

See Also ❏ Section 3.8, Special Features of System Analyzer Data Views

❏ To troubleshoot data loss: Section 3.6.3, If System Analyzer Events
are Being Dropped
Tasks and Roadmaps for System Analyzer 3-9

Benchmarking with System Analyzer
3.5 Benchmarking with System Analyzer

You can use System Analyzer to perform benchmarking analysis on
SYS/BIOS applications. The results are shown in the Duration and
Context Aware Profile features.

❏ Duration Benchmarking. Use this type of benchmarking if you want
to know the absolute amount of time spent between two points in
program execution.

❏ Context Aware Profiling. Use this type of benchmarking if you want
to be able to measure time spent in a specific thread’s context vs.
time spent in threads that preempt or are yielded to by this thread.

In order to use these features, you will need to add code to your target to
start and stop the benchmarking timer. If you do this the target application
transports the data to the host. This data is collected and processed by
System Analyzer, which can provide graph, summary, and detailed views
of this data.

Performing
Benchmarking
Analysis

Follow these steps to perform a benchmarking analysis for your
application. Follow the links below to see detailed instructions for a
particular step.

Step 1: Update your CCS installation to include System Analyzer and
UIA if you have not already done so.

■ See Section 2.2, Installing System Analyzer as Part of a Larger
Product or

■ See Section 2.3, Installing System Analyzer as a Software
Update
Tasks and Roadmaps for System Analyzer 3-10

Benchmarking with System Analyzer
Step 2: Configure your target application so that UIA logging is enabled.
Causing your application to use UIA’s LoggingSetup and Rta modules as
described in the first link for this step automatically enables logging of
execution sequence events related to Task threads. You can enable
execution sequence events for Swi and Hwi threads (which are off by
default) as described at the second link. You can skip the links to more
detailed information if you just want to use the default configuration.

■ First, see Section 5.1, Quickly Enabling UIA Instrumentation.

■ For more details, see Section 5.2.2, Enabling and Disabling
Event Logging.

■ For even more details, see Section 5.3, Customizing the
Configuration of UIA Modules.

Note: If you are analyzing a deployed system or are integrating a system
that includes SYS/BIOS applications, the previous step may have already
been performed by the application developer. If so, you can skip this step.

Step 3: Add benchmarking code to your target application.

■ For duration benchmarking, see Section 4.11.3, How Duration
Analysis Works with System Analyzer.

■ For context aware profiling, see Section 4.12.3, How Context
Aware Profiling Works with System Analyzer.

Step 4: Build, load, and run your application.

Step 5: Start a CCS Debugging session with a target configuration to
match your setup.

Step 6: Capture instrumentation data using System Analyzer. Note that
when you start a session, you can choose to also send the data to a file
for later analysis.

■ Section 4.2, Starting a Live System Analyzer Session.

Step 7: Analyze data using Duration and Context Aware Profile features.

■ Section 4.11, Using the Duration Feature with System Analyzer.

■ Section 4.12, Using Context Aware Profile with System Analyzer

See Also ❏ Section 3.8, Special Features of System Analyzer Data Views

❏ To troubleshoot data loss: Section 3.6.3, If System Analyzer Events
are Being Dropped
Tasks and Roadmaps for System Analyzer 3-11

Troubleshooting System Analyzer Connections
3.6 Troubleshooting System Analyzer Connections

The following sections describe issues that might occur as you use
System Analyzer and UIA.

3.6.1 If You Cannot Connect to the Target with System Analyzer

If you cannot connect to the target, check the following items:

❏ Verify that the UIA configuration specifies the correct transports.

❏ Verify that the configuration code for the target application includes
the ti.uia.services.Rta module. You can use the Tools > ROV menu
command in a CCS debugging session to confirm this.

❏ Verify that the correct transport functions were selected. You can do
this by looking at the ti.uia.sysbios.Adaptor (or IpcMP) transport
functions.

3.6.2 If No Events are Shown in System Analyzer Features

If you can connect to the target, but no events are shown in the Log view,
check the following items:

❏ Confirm that the endpoints are configured properly in the System
Analyzer Session Manager (Tools > System Analyzer > System
Analyzer Config). Be sure that the .out and .xml filenames are
correct.

❏ Confirm that the target application uses LoggerCircBuf.

❏ Confirm that events are being logged. You can check this by using
the ROV tool to look at the ti.uia.runtime.LoggerCircBuf module. The
"serial" field should be non-zero and increasing.

❏ Confirm that the UIA task is not being starved. You can check this by
using the ROV tool to look at the ti.uia.runtime.ServiceMgr module.
The "runCount" in the Proxy tab should be incrementing.

❏ Confirm that you’ve enabled logging by setting the common$.Diags
mask accordingly in your configuration file. See Section 5.2.2.
Tasks and Roadmaps for System Analyzer 3-12

Troubleshooting System Analyzer Connections
3.6.3 If System Analyzer Events are Being Dropped

If you can connect to the target and events are shown in the Log view,
events may still be dropped. The status bars in System Analyzer views
tell how many records are shown and how many gaps occurred.

If events are being dropped, first confirm that events are being logged by
the logger. You can check this by using the ROV tool to look at the
ti.uia.runtime.LoggerCircBuf module. If the "numDropped" field is
incrementing, then events are being dropped. If the "numDropped" field
is not incrementing, then UIA packets are being dropped, and you should
see Section 3.6.4.

To prevent events from being dropped, try one or more of the following:

❏ Increase the logger buffer size.

❏ Increase the frequency of Rta by lowering its period. The minimum is
100ms.

❏ Reduce the number of logged events.

❏ If this is a multicore application, increase the number of event
packets on the non-master processors. This allows UIA to move the
records off in a faster manner. For example:

 ServiceMgr.numEventPacketBufs = 4;

3.6.4 If System Analyzer Packets are Being Dropped

If UIA packets are being dropped, examine your configuration of IPC,
NDK, or other communications software.

3.6.5 If Events Stop Being Show Near the Beginning

For a multicore system, check the status message at the bottom of Log
View. If the message says "Waiting UIA SyncPoint data", it is possible
that the critical SyncPoint events were dropped in transport. Try using the
Disconnect and Connect commands or the Restart command.

3.6.6 If System Analyzer Events Do Not Make Sense

If the events listed in the System Analyzer features do not make sense,
confirm that the endpoints are configured properly in the System
Analyzer Session Manager (Tools > System Analyzer > System
Analyzer Config). Be sure that the .out and .xml filenames are correct.
Tasks and Roadmaps for System Analyzer 3-13

Troubleshooting System Analyzer Connections
3.6.7 If Data is Not Correlated for Multicore System

The following situations can cause correlation (out-of-sequence) errors:

❏ The clock setting is not correct. Each core/endpoint has clock
settings (local and global) that are used to convert from local to global
time. If any setting is incorrect, the global time conversion will be off
and will affect the system-level correlation. Check the clock settings
on the target side and UIA endpoint configuration.

❏ SyncPoint is not logged properly. For a multicore platform, there
must be a common global timer that each core can reference. If there
is no global timer available or it is not configured properly, the
converted global time in each core may not be correct. Also, since
most global timers have a lower clock frequency, time precision may
be lost with respect to the core’s local timer. Check the SyncPoint
events reported at the beginning of the log.

❏ Transport delay. Under certain conditions, some logs may be
transported to the host computer with a huge delay. In this case,
some old data may be received after newer data has been reported.
Check the transport, especially when using UDP. If the transport is
not reliable for a live data stream, specify a binary file to contain the
live data. After the data has been captured, open the binary file to
analyze the results.

3.6.8 If the Time Value is Too Large

If the Time value shown in the logs is much larger than you expect, you
should power-cycle the target board or perform a system reset before
testing the application.
Tasks and Roadmaps for System Analyzer 3-14

Creating Sample System Analyzer Projects
3.7 Creating Sample System Analyzer Projects

A number of project templates for use in CCS with System Analyzer and
UIA are provided.

To use a project templates, begin creating a new CCS project by
choosing File > New > CCS Project from the menus. In the Project
templates area of the New Project wizard, expand the System Analyzer
(UIA) item to see the list of available templates.

When you select a project template, a description of the project is shown
to the right. Finish creating the project and examine the *.c code files and
*.cfg configuration file. All required products and repositories are pre-
configured.

Multicore project templates are available for the EVM6472 and the
EVMTI816x. Single-core project templates that use the "stairstep"
example from SYS/BIOS are available for a number of supported
transports described on page 5–11. Additional tutorial examples are
provided; these are described on the Texas Instruments Embedded
Processors Wiki.
Tasks and Roadmaps for System Analyzer 3-15

Creating Sample System Analyzer Projects
See the sections that follow for any specific notes about settings or
changes you need to make to the project files before building, loading,
and running it.

3.7.1 Notes for EVM6472 MessageQ Project Templates

On the Project Templates page of the New CCS project wizard, select the
"evm6472: MessageQ" template. This example shows how to use IPC's
MessageQ module with UIA. The same image must be loaded on all
cores.

The RTSC Configuration Settings page of the wizard automatically has
the correct RTSC Target, Platform, and Build-Profile set.

After creating the project, examine the message.c and message.cfg files.

In the message.c file, notice the two calls to Log_write2() in tsk0_func(),
which runs only on CORE0. The calls to Log_write2() pass event types
of UIABenchmark_start and UIABenchmark_stop. These are used to
bracket the code that uses MessageQ to send and receive a message
from a remote processor.

In the message.cfg file, notice that the LoggingSetup module is
configured to use the UploadMode_NONJTAGTRANSPORT mode. This
mode uses Ethernet as the default transport to move Log records to CCS
via the UIA ServiceMgr framework. This example configures the
ServiceMgr module to use a multicore topology. All the cores route their
data to the ServiceMgr module running on Linux. The configuration also
contains a section that configures the NDK, which is used by the Ethernet
transport.

UIA ships pre-built EVM6472 Ethernet drivers. The libraries are in the
<uia_install>\packages\ti\uia\examples\evm6472\ndkdrivers directory.
These libraries were copied out of the PDK_1_00_00_05 package. This
was done to make building the examples easier.
Tasks and Roadmaps for System Analyzer 3-16

Creating Sample System Analyzer Projects
Within the configuration file of EVM6472 example, the following line gets
the pre-built Ethernet libraries and includes them in the build. If you have
an updated PDK, simply remove this statement and add the libraries into
the project (or follow the instructions with the PDK).

var ndkdrivers =

 xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

Note that the NDK currently supports only the COFF format.

You can use the following System Analyzer analysis features when
running this example: CPU Load, Task Load, Execution Graph, Duration,
and Context Aware Profile.

3.7.2 Notes for EVMTI816x SimpleTask Project Templates

On the Project Settings page of the New CCS project wizard, be sure to
select the correct Device Variant (e.g. C674X or CortexM3).

On the Project Templates page of the New CCS project wizard, select
one of the "evmti816x: SimpleTask" templates. These examples use
LoggerCircBuf or LoggerSM (shared memory) to log benchmark events.
Different projects are provided for the DSP, video M3, and vpss M3.

On the RTSC Configuration Settings page of the wizard, make sure to
check the box for SysLink package in the Products and Repositories list.
Use the Add button to add the repository if it is not shown.

The RTSC Configuration Settings page of the wizard automatically has
the correct RTSC Target, Platform, and Build-Profile set. For example:

After creating the project, examine the simpleTask.c and *.cfg files.

In the simpleTask.c file, notice the two calls to Log_write1() in the
taskLoad() function. The calls to Log_write1() pass event types of
UIABenchmark_start and UIABenchmark_stop. These are used to
bracket the code that reverses the bits in a buffer.

The configuration filename is dependent on the core and the logger
implementation. For example, for the LoggerCircBuf version of the DSP
application, the configuration file is called dspLoggerCircBuf.cfg. All
Tasks and Roadmaps for System Analyzer 3-17

Creating Sample System Analyzer Projects
versions of the configuration files for these examples include the
simpleTask.cfg.xs configuration file. This shared file configures Clock,
Semaphore, and Task objects. It also configures IPC and the shared
memory region.

The non-shared configuration files cause the LoggingSetup module to
use the UploadMode_NONJTAGTRANSPORT mode. This mode uses
Ethernet as the default transport to move Log records to CCS via the UIA
ServiceMgr framework. This example configures the ServiceMgr module
to use a multicore topology.

You can use the following System Analyzer analysis features with these
examples: CPU Load, Task Load, Execution Graph, Duration, and
Context Aware Profile.

See the <uia_install>\packages\ti\uia\examples\evmti816x directory for a
readme.txt file with details on how to run the example. The source code
and a Makefile to build the Linux application are also included in the
<uia_install>packages\ti\uia\examples\evmti816x directory.

3.7.3 Notes for Single-Core Stairstep Project Templates

On the Project Templates page of the New CCS project wizard, expand
the System Analyzer > Single-core Examples list and choose a
"Stairstep" template. These examples use Hwi, Swi, and Task threads run
to add to the CPU load of the system. This example periodically
generates log events.

Each of the examples uses a different transport mode. These modes are
configured by setting the LoggingSetup.eventUploadMode parameter.

The following list provides notes that apply to specific versions of this
example:

❏ Stairstep Ethernet. This template is configured for use on the
EVM6472 with NDK. Within the configuration file, the following line
gets the pre-built Ethernet libraries and includes them in the build. If
you have an updated PDK or are using a different device, simply
remove this statement and add the libraries into the project (or follow
the instructions with the PDK). See Section 3.7.1 for more about
using the NDK with an application for the EVM6472.

 var ndkdrivers =

 xdc.loadPackage('ti.uia.examples.evm6472.ndkdrivers');

❏ Stairstep JTAG RunMode. This mode is only supported on CPUs
that support real-time JTAG access. This support is provided on the
Tasks and Roadmaps for System Analyzer 3-18

Creating Sample System Analyzer Projects
C64x+ and C66x CPUs. When the UploadMode_JTAGRUNMODE is
used, the UIA ServiceMgr framework and NDK are not used.

❏ All other Stairstep templates. The JTAG StopMode, ProbePoint,
and Simulator templates are not-platform specific. These templates
do not use the UIA ServiceMgr framework or the NDK.

In the Stairstep example, the cpuLoadInit() function gets the CPU
frequency and fills arrays with load values corresponding to 0, 25, 50, 75,
and 95 percent CPU loads. The timerFunc() function is a Hwi thread that
runs every 100ms to launch a Hwi, Swi, and Task thread. Each thread
then performs a doLoad() function before relinquishing the CPU. After
staying at each load setting for 5 seconds, timerFunc() calls the step()
function to advance to the next set of Hwi, Swi, and Task load values. The
cycle repeats after reaching the 95 percent load.

You can use the following System Analyzer analysis features when
running these examples: CPU Load, Task Load, and Execution Graph.

3.7.4 Notes for System Analyzer Tutorial Project Templates

You can create projects using the System Analyzer and UIA tutorials. See
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials

❏ Tutorial 1: This template is intended for use on a C64x+ or C66x
simulator. This tutorial shows how to log errors, warnings, and
informational events, benchmark code, and control which events are
logged.

❏ Tutorial 2: This template is intended for use on a C64x+ or C66x
emulator. This tutorial shows how to log data that can be graphed and
analyzed for minimum, maximum, and average statistics.
Tasks and Roadmaps for System Analyzer 3-19

http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials
http://processors.wiki.ti.com/index.php/Multicore_System_Analyzer_Tutorials

Special Features of System Analyzer Data Views
3.8 Special Features of System Analyzer Data Views

System Analyzer provides three types of data views for working with
collected data. Each type of data view has some power features you can
use to navigate, analyze, and find points of interest. The sections that
follow provide help on using the special features of these data views.

❏ Table Views are used to display data in a table. Table views are
used for Summary and Detail views in System Analyzer.

❏ Line Graphs are used for x/y plotting, mainly for viewing changes
of a variable against time. System Analyzer uses line graphs for all
graphs except the Execution Graph.

❏ DVT Graphs depict state transitions and events against time.
Groups of related states form a timeline for a core or thread. Different
types of data are assigned different colors. System Analyzer uses
this graph type for the Execution Graph.

Special features provided for these view types are as follows:

❏ Zoom (graphs only) adjusts the scaling of the graph. See
Section 3.8.1.

❏ Measurement Markers (graphs only) measure distances in a
graph. See Section 3.8.2.

❏ Bookmarks highlight certain rows and provide ways to quickly
jump to marked rows. See Section 3.8.3.

❏ Groups and Synchronous Scrolling causes several views to
scroll so that data from the same time is shown. See Section 3.8.4.

❏ Find lets you search this view using a field value or expression.
See Section 3.8.5.

❏ Filter lets you display only data that matches a pattern you
specify using the Set Filter Expression dialog. See Section 3.8.6.

❏ Export sends selected data to a CSV file. See Section 3.8.7.

❏ Scroll Lock controls scrolling due to updates. See Section 3.8.8.

❏ Sort controls the record sequence in a table.

❏ Auto Fit adjusts table column widths to display complete values.

❏ Tree Mode toggles between flat and tree mode on y-axis labels.
See Section 4.9.

❏ Refresh triggers a refresh of the view.

Also see page 4–6 and page 4–21 for additional descriptions of toolbar
icons, including those shown only in the Log view.
Tasks and Roadmaps for System Analyzer 3-20

Special Features of System Analyzer Data Views
3.8.1 Zoom (Graphs Only)

Zooming is only available in graph views. You can zoom in or out on both
the x- and y-axis in line graphs. For DVT graphs (like the Execution
Graph), you can only zoom on the x-axis.

You can zoom using any of these methods:

Using the Mouse

❏ Hold down the Alt key and drag the mouse to select an area on the
graph to expand.

❏ Drag the mouse to the left or below the graph where the axis units are
shown (without holding the Alt key) to select a range to expand.

❏ Click on the x-axis legend area below the graph and use your mouse
scroll wheel to zoom in or out.

Using the Keyboard

❏ Press Ctrl + to zoom in.

❏ Press Ctrl - to zoom out.

Using the Toolbar

❏ The Zoom In toolbar icon increases the graph resolution to
provide more detail. It uses the zoom direction and zoom factor set
in the drop-down.

❏ The Zoom Out toolbar icon decreases the graph resolution to
provide more detail. It uses the zoom direction and zoom factor set
in the drop-down.

❏ The Reset Zoom toolbar icons resets the zoom level of the graph
to the original zoom factor.

❏ The Select Zoom Options drop-down next to the Reset Zoom
icon lets you select the zoom factor and directions of the zoom for a
line graph. By default, zooming affects both the x- and y-axis and
zooms by a factor of 2. You can choose options in this drop-down to
apply zooming to only one axis or to zoom by factors of 4, 5, or 10.

Note: When you use the keyboard, scroll-wheel, or toolbar icons for
zooming, the cursor position is used as the center for zooming. If there is
no current cursor position, the center of the graph is used. To set a cursor
position, click on the point of interest on the graph area. This places a red
line or cross-hair on the graph, which is used for zooming.
Tasks and Roadmaps for System Analyzer 3-21

Special Features of System Analyzer Data Views
3.8.2 Measurement Markers (Graphs Only)

Use the Measurement Marker Mode toolbar icon to add a
measurement marker line to a view. A measurement marker line
identifies the data value at a location and allows you to measure the
distance between multiple locations on a graph.

Click the icon to switch to Measurement mode. Then, you see marker
lines as you move the mouse around the graph. You can click on the
graph to add a marker at that position. You stay in the "add marker" mode
until you add a marker or click the Measurement Marker icon again.

The legend area above the graph shows the X and Y values of markers.
Right-click inside the graph to enable or disable the Legend from the
shortcut menu.

If you create multiple measurement markers, the legend also shows the
distance (or delta) between consecutive data points. For example, as:

X2-X1 = 792 Y1-Y2 = 2.4

To add a marker, move the mouse to a location on the graph, right-click
and select Insert Measurement Mark.

To move a marker to a different location on the graph, hold down the Shift
key and drag a marker to a new location.

To remove a marker from the view, right-click on the graph, select
Remove Measurement Mark and click on an individual marker. Or,
double-click on a measurement marker to remove it. To remove all the
markers, right-click on the graph and select Remove All Measurement
Marks.

The drop-down menu to the right of the Measurement Marker icon allows
you to select the following marker modes:

❏ Freeform is the default mode, which lets you add a marker line at any
point on the view.

❏ Snap to Data forces you to add markers only at data points. When
you move the mouse over the graph in this mode, you see circles on
the four closest data points and a dot on the closest data point. Click
on the graph to add a marker at the closest data point.

❏ X-axis/Y-axis/Both determines whether placing a marker adds lines
that intersect the x-axis, the y-axis, or both axes.
Tasks and Roadmaps for System Analyzer 3-22

Special Features of System Analyzer Data Views
3.8.3 Bookmarks

Use the Bookmarks toolbar icon to create a bookmark on any data
point of a graph or table. The bookmark will be displayed as a vertical red
dashed line in a graph or a row with a red background in a table.

You can use the drop-down next to the icon to jump to a previously
created bookmark. Each bookmark is automatically assigned an ID
string. A bookmarks applies only to the view in which you created it.

Choose Manage the Bookmarks from the drop-down list to open a
dialog that lets you rename or delete bookmarks.

3.8.4 Groups and Synchronous Scrolling

You can group data views together based on common data such as time
values. Grouped views are scrolled synchronously to let you easily
navigate to interesting points. For example, if you group the CPU load
graph with the Log view, then if you click on the CPU Load graph, the Log
view displays the closest record to where you clicked in the graph.

To enable grouping, toggle on the View with Group icon on the
toolbar. Then, simply move the cursor in a grouped table or on a graph
as you normally would.

For graphs, the x-axis is used for the common reference value. For tables
you can define the reference column. Also, you can use the drop-down
to define multiple view groups.

In graphs you can use the Align Horizontal Center and Align
Horizontal Range icons to determine whether this view should be
grouped according to the center value currently displayed on the x-axis
or the full range of values displayed on the x-axis.
Tasks and Roadmaps for System Analyzer 3-23

Special Features of System Analyzer Data Views
3.8.5 Find

Click to open a dialog that lets you locate a record containing a
particular string in one of the fields or a record whose fields satisfy a
particular expression. Clicking Find repeatedly moves you through the
data to each instance of the desired value or string.

The Use Field tab is best for simple searches that compare a field value
using common operators such as ==, <, != etc. Follow these steps in the
Use Field tab:

1) Click the Find icon in the toolbar.

2) Select the Use Field tab.

3) Select a field name from the left drop-down list. This list shows all the
data columns used in the detail view for this analysis feature.

4) Select an operation from the middle drop-down list. The operators
depend on the datatype for the field you selected.

5) Type a field value for the comparison in the text box.

6) [Optional] Check the Use Bits Mask (hex) box and specify a
hexadecimal bit mask in the adjacent field if you want to exclude a
portion of a value from consideration.

7) [Optional] Check the Case Sensitive box if you want a case-
sensitive search.

8) [Optional] Check the Wrap Search box if you want to continue
searching from the top of the table once the end is reached.

9) [Optional] Select a Direction option for the search.

10) Click Find to start the search.
Tasks and Roadmaps for System Analyzer 3-24

Special Features of System Analyzer Data Views
The Use Expression tab lets you enter a regular expression for pattern
matching and lets you combine expressions with Boolean operators.
Follow these steps in the Use Expression tab:

1) Click the Find icon in the toolbar.

2) Select the Use Expression tab.

3) Create a regular expression within the Expression text box. Visit the
link for info on creating expressions used to find data. You can type
a regular expression directly or use the Expression Helper to
assemble the expression. To use the Expression Helper, follow these
sub-steps:

■ Select a field name from the left drop-down list. This list shows
all data columns used in the detail view for this analysis feature.

■ Select an operation from the middle drop-down list. The
operators depend on the datatype for the field you selected.

■ Type a field value for the comparison in the text box.

■ [Optional] Check the Use Bits Mask (hex) box and specify a
hexadecimal bit mask in the adjacent field if you want to exclude
a portion of a value from consideration.

■ [Optional] Check the Case Sensitive box if you want a case-
sensitive search.
Tasks and Roadmaps for System Analyzer 3-25

Special Features of System Analyzer Data Views
■ Click And or Or to create the regular expression and add it to the
existing statement in the Expression text box.

4) [Optional] Check the Wrap Search box if you want to continue
searching from the top of the table once the end is reached.

5) [Optional] Select a Direction option for the search.

6) Click Find to start the search.

To clear the drop-down list of previously searched items in the
Expression field, click Clear History.

Information about regular expression syntax is widely available on the
web.

3.8.6 Filter

Click to open a dialog that filter the view to display only records that
contain a particular string in one of the fields or records whose fields
satisfy a particular expression.

The Use Field tab is best for simple filters that compare a field value
using common operators such as ==, <, != etc. Follow these steps in the
Use Field tab:

1) Click the Filter icon in the toolbar.

2) Select the Use Field tab.

3) Select a field name from the left drop-down list. This list shows all the
data columns used in the detail view for this analysis feature.

4) Select an operation from the middle drop-down list. The operators
depend on the datatype for the field you selected.

5) Type a field value for the comparison in the text box.
Tasks and Roadmaps for System Analyzer 3-26

Special Features of System Analyzer Data Views
6) [Optional] Check the Use Bits Mask (hex) box and specify a
hexadecimal bit mask in the adjacent field if you want to exclude a
portion of a value from consideration.

7) [Optional] Check the Case Sensitive box if you want a case-
sensitive filter.

8) Click Filter to limit the records or data points displayed.

The Use Expression tab lets you enter a regular expression for pattern
matching and lets you combine expressions with Boolean operators.
Follow these steps in the Use Expression tab:

1) Click the Filter icon in the toolbar.

2) Select the Use Expression tab.

3) Create a regular expression within the Expression text box. Visit the
link for info on creating expressions used to filter data. You can type
a regular expression directly or use the Expression Helper to
assemble the expression. To use the Expression Helper, follow these
sub-steps:

■ Select a field name from the left drop-down list. This list shows
all data columns used in the detail view for this analysis feature.

■ Select an operation from the middle drop-down list. The
operators depend on the datatype for the field you selected.

■ Type a field value for the comparison in the text box.
Tasks and Roadmaps for System Analyzer 3-27

Special Features of System Analyzer Data Views
■ [Optional] Check the Use Bits Mask (hex) box and specify a
hexadecimal bit mask in the adjacent field if you want to exclude
a portion of a value from consideration.

■ [Optional] Check the Case Sensitive box if you want a case-
sensitive search.

■ Click And or Or to create the regular expression and add it to the
existing statement in the Expression text box.

4) Click Filter to limit the records or data points displayed.

To clear the drop-down list of previously searched items in the
Expression field, click Clear History.

Information about regular expression syntax is widely available on the
web.

3.8.7 Export

You can save data in a table or graph view to an external file by using the
Data > Export commands. All columns contained in the table (not just the
displayed columns) and the displayed graph numbers are placed into a
comma-separated value file format (*.csv filename extension).

Numeric values are stored in the CSV format using a general format. You
can use spreadsheet software such as Microsoft Excel to perform
additional computations or create annotated charts from the exported
information.

To export data to an external CSV file:

1) Select a table or a graph view.

2) If you want to export only some rows from a table view, hold down the
Shift key and select a range of rows or hold down the Ctrl key while
selecting multiple rows.

3) Right-click on the table or graph and select Data > Export All or Data
> Export Selected from the right-click menu.

4) In the Save As dialog, browse for the location where you want to save
the file and type a filename. Click Save.

5) Open the file you created using a spreadsheet or other software
program. Alternately, you can later reopen the CSV file in a System
Analyzer session as described in Section 4.4.1.
Tasks and Roadmaps for System Analyzer 3-28

Special Features of System Analyzer Data Views
3.8.8 Cursor and Scroll Lock

Data views scroll to the end whenever new data is received. If you click
on a point in a graph or table while data is updating, automatic scrolling
is stopped, even though data is still being added at to the end.

To continue scrolling to the end automatically, toggle off the Scroll
Lock button on the toolbar.

Note that if you have enabled grouping (the icon is toggled on), the
scroll lock icon does not lock the scrolling of grouped views.

Use the Freeze icon on the toolbar to freeze the data updates and
automatic refreshing completely.
Tasks and Roadmaps for System Analyzer 3-29

Special Features of System Analyzer Data Views
Tasks and Roadmaps for System Analyzer 3-30

Chapter 4

Using System Analyzer in Code
Composer Studio

This chapter describes the host-side analysis features provided in Code
Composer Studio for examining instrumentation data sent to the host.

4.1 Overview of System Analyzer Features . 4–2

4.2 Starting a Live System Analyzer Session . 4–3

4.3 Configuring System Analyzer Transports and Endpoints 4–9

4.4 Opening CSV and Binary Files Containing System Analyzer Data 4–14

4.5 Using the Log View. 4–19

4.6 Opening System Analyzer Features . 4–23

4.7 Using the CPU Load View with System Analyzer 4–28

4.8 Using the Task Load View with System Analyzer 4–31

4.9 Using the Execution Graph with System Analyzer 4–34

4.10 Using the Count Analysis Feature with System Analyzer 4–36

4.11 Using the Duration Feature with System Analyzer 4–41

4.12 Using Context Aware Profile with System Analyzer 4–46

Topic Page
4-1

Overview of System Analyzer Features
4.1 Overview of System Analyzer Features

The DVT upgrade to support System Analyzer includes analysis features
for viewing the CPU and thread loads, the execution sequence, thread
durations, and context profiling. The features include graphs, detailed
logs, and summary logs.

You can use these features at run-time and can also record the run-time
data for later analysis.

❏ Run-time analysis. Real-time data analysis can be performed
without the need to halt the target program. This ensures that actual
program behavior can be observed, since halting multiple cores can
result in threading that differs from real-time behavior.

❏ Recording and playback of data. You can record real-time data and
later reload the data to further analyze the activity. System Analyzer
lets you record and playback using both CSV and binary files.

This chapter describes how to set up, start, and stop data collection and
analysis. It also describes how to use specific System Analyzer features.
Using System Analyzer in Code Composer Studio 4-2

Starting a Live System Analyzer Session
4.2 Starting a Live System Analyzer Session

To gather live System Analyzer data, you need an instrumented
application running on the target(s). If it has not already been done, you
need to enable UIA logging by configuring the application as described in
Section 5.1, Quickly Enabling UIA Instrumentation. Once you have
enabled UIA logging, SYS/BIOS applications provide UIA data to the
System Analyzer features in CCS.

To start a live System Analyzer session, follow these steps:

1) If the application is not already loaded and running, load it in CCS.

2) Create a CCS target configuration and start a debugging session,
This enables System Analyzer to auto-configure your session.
(Alternatively, you can create a UIA configuration and save it to a file
as described in Section 4.3. If you use a configuration from a file, you
do not need to be running a CCS debugging session, because
System Analyzer data is collected via Ethernet transports rather than
streaming JTAG.)

3) In CCS, choose the Tools > System Analyzer > Live menu
command. You will see the Live Parameters dialog.

4) The top section of the dialog lets you customize the UIA
configuration, which controls how System Analyzer connects to the
target.

■ Instrumentation (UIA) Config: By default, the UIA configuration
is automatically generated using the current target configuration
for the CCS debug session, the .out file that is currently loaded,
and auto-detected IP addresses.
Using System Analyzer in Code Composer Studio 4-3

Starting a Live System Analyzer Session
■ Browse: You can click "..." to browse for a UIA configuration you
have saved to a *.usmxml file. See Section 4.3 for more about
creating UIA Configuration files.

■ Create UIA Config File: This button opens a dialog that lets you
create and save a configuration.

■ Cores: The auto-detected target cores or cores defined in the
UIA configuration file are shown below the UIA Config field.

■ Transport: The transport that is auto-detected or specified in the
UIA Config file you selected is shown here.

■ IP Address: The IP address of the target board is autodetected
and shown here. You can type a different value if the value
shown is incorrect.

5) The next section of the dialog lets you select how to view the data that
will be collected.

■ Analysis Feature: Choose features you want to use. These
features will process events that apply to them. (You can run
additional analysis features after starting the session.)

■ Which Cores: Choose whether to display events from ALL cores
or a single core. The drop-down list shows the core names for
endpoints in your current UIA configuration along with core
names for any active CCS target configuration for a debugging
session. For the Context Aware Profile and Task Load features,
a specific core name is required (not ALL), and you can select or
type the name.

■ Which Views to Open: Choose the view types you want to open
automatically. You can later open more views, but these
checkboxes provide an easy way to open a number of them.
Using System Analyzer in Code Composer Studio 4-4

Starting a Live System Analyzer Session
6) The last section of the dialog lets you specify how the data will be
collected and stored.

■ Collect data for: Type the number of seconds to collect data.
The default is 5 seconds. This time is measured on the host
unless you check the Transport Data only after collection box.
Choose Until data transfer is manually paused if you want to
collect data until you pause or stop the data collection or halt the
application.

■ Transport Data only after collection: Check this box if you
want to get event data from the target only after the collection
time expires. That is, the target will run for the specified time
without transferring data; the target restarts the transfer at the
end of the time. Using this option reduces the intrusiveness of the
transport while data is being collected. However the amount of
data that can be collected is limited to the log buffer size. This
option is supported only if you are using an Ethernet transport
(that is, you are using Upload_NONJTAGTRANSPORT mode for
the LoggingSetup.eventUploadMode property) and if your target
supports control messages.

■ Clear existing data before collection: Check this box if you
want to erase any log records stored in the log buffers on the
target when data collection starts. This option is not available if
you are using a JTAG-based transport.

■ Save data to file also: By default, live data is shown in the Log
view and is saved to a binary file called systemAnalyzerData.bin.
Later, you can reopen the file to analyze it further. You can
browse to select a different filename or file location. If you do not
want to create a file, clear the file path in this field. If you choose
a binary file that contains records from a previous run, the
records will be cleared from the file at the start of the run.

Note: If you let System Analyzer collect events for a significant amount of
time (or even for a short period of time if the data rate is very high), your
system resources will get used up resulting in slow performance.
Using System Analyzer in Code Composer Studio 4-5

Starting a Live System Analyzer Session
Note: Depending on the data rate, multicore event correlation may not work
well when viewing live data. If events seem out of order, save the data to a
binary file, then open the binary file for later processing to improve the
event correlation.

Note: Multicore event correlation for events uploaded via JTAG transports
is an unsupported feature in UIA 1.0.

7) Click Run to connect to the target and show live data collection in the
Log view. See Section 4.5 for information about using the Log view.

If you start a new live session when a live session is already running, the
current session is closed so the new session can be opened. You can run
only one live session or binary file session at a time. (You can have
multiple CSV files open along with a single live session or binary file.)

If you want to save instrumentation data to a CSV file (instead of a binary
file), right-click on the Log view and choose Data > Export All. For
information about using binary and CSV files that store instrumentation
data, see Section 4.4, Opening CSV and Binary Files Containing System
Analyzer Data.

4.2.1 Managing a System Analyzer Session

You can manage System Analyzer sessions—including live sessions and
binary files—with commands in the Log view toolbar and right-click menu
and the Tools > System Analyzer > session menu from the main CCS
menu bar. You can use the commands from the following list that apply to
the current state of the session:

❏ Connect/Disconnect establishes or disconnects a connection
to the target(s) using the UIA configuration during a live session. If
you are using a binary file, the Connect command reruns the file.
Data is cleared from the System Analyzer views when you use the
Connect command.

❏ Pause/Resume Data Decoding halts and resumes processing
of records received from the target. Available only for live sessions.

❏ Clear Log View erases all records from the Log view. Available
only for live sessions.
Using System Analyzer in Code Composer Studio 4-6

Starting a Live System Analyzer Session
❏ Restart causes data transfer to start over. This has the same
effect as using the Disconnect command followed by the Connect
command. Data is cleared from the System Analyzer views when you
use this command. Available only for live sessions.

❏ Pause/Resume Transfer halts and resumes the transfer of
records from the target(s) to the host. This command is supported
only if you are using an Ethernet transport (that is, you have set
LoggingSetup.eventUploadMode to Upload_NONJTAGTRANSPORT)
and if your target supports control messages. Available only for live
sessions.

❏ Freeze/Resume Data Update halts and resumes updates to the
current view as a result of decoding data. If you pause data updates
with this icon, data decoding continues in the background.

❏ Scroll Lock lets you examine records as data is being collected
without having the display jump to the end whenever new records are
added to the view. See Section 3.8.8.

Data is processed in the following sequence: data transfer, then data
decoding, then data updates. So, for example, if you use Pause
Transfer, data that has already been transferred to the host will be
decoded and updated in the display; once all transferred data has been
processed, the data decoding and updates will need to wait for more
data. Similarly, if you Pause Data Decoding, data updates will need to
wait once all the decoded records have been displayed.

The following commands are available only from the Log view right-click
menu for CSV and binary files.

❏ Stop halts processing of the current file.

❏ Clear Data clears all data in all open System Analyzer feature views.

❏ Open File lets you select a CSV or binary file to open and process.

For descriptions of more toolbar icons, see page 3–20 and page 4–21.
Using System Analyzer in Code Composer Studio 4-7

Starting a Live System Analyzer Session
4.2.2 Removing a System Analyzer Session

System Analyzer sessions—including live sessions, binary files, and
CSV files—remain open even if you close all the views of the session
including the Log view. You may want to close a session, for example, in
order to open a different live session or a binary file, since only one of
these can be open at a time.

In order to completely close a session, choose Tools > System Analyzer
> session_name > Remove from the main CCS menu bar.
Using System Analyzer in Code Composer Studio 4-8

Configuring System Analyzer Transports and Endpoints
4.3 Configuring System Analyzer Transports and Endpoints

System Analyzer data is collected via an Ethernet transport that needs a
configuration within CCS in order to collect data. The easy way to
configure System Analyzer is to start a Debugger session in CCS with the
target configuration for your platform. System Analyzer can usually get
enough information from the .out file that was loaded, the target
configuration, and the auto-detected IP address of the target to auto-
configure the information it needs.

Alternatively, you can create a UIA configuration and save it to a file as
described here. If you use later collect data using a configuration file, you
do not need to be running a CCS debugging session, because System
Analyzer data is collected via Ethernet transports rather than streaming
JTAG.

A UIA configuration specifies the transports used to send logs and
commands between the target and host. It also specifies the cores that
will be sending data to System Analyzer. You can save a configuration
after you create it for later use.

Notice in the figure above that a UIA configuration contains an Event
Transport, a Control and Status Transport, and endpoints for each core
in the application.

To create a UIA configuration, follow these steps:
Using System Analyzer in Code Composer Studio 4-9

Configuring System Analyzer Transports and Endpoints
1) In CCS, choose the Tools > System Analyzer > UIA Config menu
command.

2) Click the Event Transport icon in the UIA Config dialog. This lets
you specify the transport used for moving logs from the target to the
host.

3) In the Add an Event Connection dialog, provide details about the
transport you want to use. Different target connections require
different transports.

■ The Transport Type options are UDP, TCPIP, JTAG, STM, and
FILE. The default is UDP.

■ The Address is the IP address of the target or of the master core
in the case of a multicore application.

■ The Port is the TCP or UDP port number. The default is 1235.
Using System Analyzer in Code Composer Studio 4-10

Configuring System Analyzer Transports and Endpoints
4) Click the Control & Status Transport icon. This transport is
used for sending and receiving commands. Different target
connections require different transports.

■ Either TCP/IP or UDP can be used as the transport type. The
default transport type is TCP/IP. If you are using a JTAG event
transport, set the control and status transport type to "NONE".

■ The default port is 1234.
Using System Analyzer in Code Composer Studio 4-11

Configuring System Analyzer Transports and Endpoints
5) For each core in your application, click the Endpoint icon. An
"endpoint" is a description of a core and the target application it is
running. This provides the host with a list of cores to use in
interpreting System Analyzer log data.

■ Name. Type the name of the target. If a CCS debug session is
running and the target configuration matches that of your target
application, you can select a name from the drop-down list. The
actual name chosen here is not important, but it is best to use the
same names here and the CCS Target Configuration.

■ EndPoint Address. This is the number of the core starting from
0. For example, use 0 for CPU 0, 1 for CPU1, and so on. These
numbers must correspond to the ServiceMgr module’s Core ID,
which usually defaults to the index number of the
ti.sdo.utils.MultiProc ID from IPC.

■ .out file. The filename of the compiled and linked target
application. Click the ... button and browse to find the file. The file
extension may by .out or may contain the platform, for example,
.x64P. When you click OK, the dialog checks to make sure this
file exists.
Using System Analyzer in Code Composer Studio 4-12

Configuring System Analyzer Transports and Endpoints
■ .uia.xml file. Name of the generated System Analyzer metadata
file. This is an XML file that is created if your target application
includes any UIA modules. It is typically auto-discovered when
you select a .out file and click OK. If the file cannot be found
automatically, click ... and browse to find the file. For example,
the file may be stored in the Default\configPkg\package\cfg
subdirectory of the project when you build the project.

■ .rta.xml file. Name of the generated RTA metadata file. This file
is created if your target application includes the RTA module. It is
typically auto-discovered when you select a .out file and click OK.
If the file cannot be found automatically, click ... and browse to
find the file. This file is likely to be stored in the same directory as
the .uia.xml file.

■ Clock freq (MHz). Type the clock speed for this CPU in MHz. If
you do not provide the correct value here, the durations reported
by System Analyzer will not be converted to nanoseconds
correctly.

■ Cycles per tick. Type the number of cycles per clock tick for this
CPU here. If you do not provide the correct value here, the
durations reported by System Analyzer will not be converted to
nanoseconds correctly.

■ Stopmode JTAG monitor. Check this box if you want records to
be transferred via JTAG when the target is halted. That is, check
this box if the target application on this endpoint is configured to
use any of the following settings for the eventUploadMode
parameter of the LoggingSetup module: Upload_SIMULATOR,
Upload_PROBEPOINT, or Upload_JTAGSTOPMODE.

6) Once you have created both transports and the endpoints for each
core, save the configuration by clicking the Save button. Browse for
a directory to contain the file and type a filename. The Save As dialog
shows that the configuration is saved in a file with an extension of
.usmxml. The .usmxml file is used if you want to specify a saved
configuration to use in a live session (page 4–3) or when opening a
binary file (page 4–16). Behind the scenes, a file with the same name
but a .xml extension is also saved, but you can ignore the .xml file.

If you want to edit an item in the configuration, you can double-click on it
or right-click and select Edit the selected item to open the dialog used
to create that item. To delete an item, right-click and select Delete the
selected item.

To load a UIA configuration, click the Open icon in the toolbar.
Browse for and open a configuration file you have saved (with a file
extension of .usmxml).
Using System Analyzer in Code Composer Studio 4-13

Opening CSV and Binary Files Containing System Analyzer Data
4.4 Opening CSV and Binary Files Containing System Analyzer Data

The System Analyzer features can save analysis data in two different file
types:

❏ CSV files include UIA configuration information, so you do not need
a UIA configuration in order to use a CSV file. See Section 4.4.1 for
information about opening System Analyzer data saved to a CSV file.

❏ Binary files do not include UIA configuration information, so you do
need a UIA configuration in order to see analysis data saved to a
binary file. See Section 4.4.2 for information about opening System
Analyzer data saved to a binary file.

A sample CSV data file is provided with System Analyzer so that you can
try the System Analyzer features immediately.

See Section 4.2 for information about creating binary files and Section
for information about creating CSV files.

4.4.1 Opening a CSV File with System Analyzer

You can experiment with the host-side System Analyzer features using a
CSV (comma-separated values) data file that is provided with the DVT
installation. This file is a recording of instrumentation data collected in a
run-time session using a 6-core EVM6472 application.

Since CSV files contain data that is already decoded, no UIA
configuration is needed to open a CSV file containing System Analyzer
data.

To load the provided CSV file, follow these steps:

1) Start Code Composer Studio 5.x. You do not need to open a project
or launch a debug session in order to use the analysis features with
a pre-recorded CSV file.

2) Choose the Tools > System Analyzer > Open CSV File menu
command.

3) In the CSV File Parameters dialog, click the "…" button to the right of
the File Name field.

4) Browse to the <ccs_install>\ccsv5\ccs_base_5.x.x.xx\dvt_3.1.x.xx\
AnalysisLibrary\DataProviders\CsvViewer folder, where x.xx is the
latest version of CCS and DVT you have installed.
Using System Analyzer in Code Composer Studio 4-14

Opening CSV and Binary Files Containing System Analyzer Data
5) Select the saSampleData.csv file and click Open.

6) In the Analysis Feature column, choose features you want to use.
These features will process events that apply to them when you open
the CSV file. (You can run additional analysis features after you open
the file.)

7) In the Which Cores column, choose whether to display events from
ALL cores or a single core. The drop-down list shows the core names
for endpoints for any active CCS target configuration for a debugging
session. For the Context Aware Profile and Task Load features, a
specific core name is required (not ALL), and you can select or type
the name.

8) In the Which Views to Open column, choose the view types you
want to open automatically. You can later open more views, but these
checkboxes provide an easy way to open a number of them. For this
example, check the following boxes:
Using System Analyzer in Code Composer Studio 4-15

Opening CSV and Binary Files Containing System Analyzer Data
9) Click Run. You will see the System Analyzer Log view, which
displays the events stored in the CSV file.

10) See Section 4.5 for information about how to use the Log view.

After learning to use System Analyzer features, you can analyze data
from your own applications and record your own sessions as CSV files.
See page 4–21 for information about creating your own CSV files.

4.4.2 Opening a Binary File with System Analyzer

Opening a binary file that you saved during a run-time session lets you
do later analysis of the results. See Section 4.2 for information about
creating binary files.

You can load a binary file that contains System Analyzer data if you have
a UIA configuration that matches the configuration with which the
analysis data was saved or if you have a Debugger session open that
matches the target configuration for the target used to create the binary
file. (In contrast, opening a CSV file containing System Analyzer data
does not require a UIA configuration because the data is already
decoded.)

To load a binary file containing System Analyzer event logs, follow these
steps:

1) Start Code Composer Studio 5.x.

2) Create a CCS target configuration and start a debugging session,
This enables System Analyzer to auto-configure your session.
(Alternatively, you can create a UIA configuration and save it to a file
as described in Section 4.3.)

3) Choose the Tools > System Analyzer > Open Binary File menu
command.
Using System Analyzer in Code Composer Studio 4-16

Opening CSV and Binary Files Containing System Analyzer Data
4) In the first section of the Binary File Parameters dialog, browse for
the binary file you want to open. The default file is
systemAnalyzerData.bin in your workspace directory.

5) The next section of the dialog lets you customize the UIA
configuration, which controls how System Analyzer interprets the
cores referenced in the binary file.

■ Instrumentation (UIA) Config: By default, the UIA configuration
is automatically generated using the current target configuration
for the CCS debug session, the .out file that is currently loaded,
and auto-detected IP addresses.

■ Browse: You can click "..." to browse for a UIA configuration you
have saved to a *.usmxml file. The endpoint definitions in the file
are used to interpret the binary file and must match the endpoints
used when the binary file was saved. (The transport definitions
are ignored since the data has already been transported.) See
Section 4.3 for more about creating UIA Configuration files.

■ Create UIA Config File: This button opens a dialog that lets you
create and save a configuration.

■ Cores: The list of cores is shown below the UIA Config field.
Using System Analyzer in Code Composer Studio 4-17

Opening CSV and Binary Files Containing System Analyzer Data
6) The last section of the dialog lets you select how to view the data.

■ In the Analysis Feature column, choose features you want to
use. These features will process events that apply to them when
you open the CSV file. (You can run additional analysis features
after you open the file.)

■ In the Which Cores column, choose to display events from ALL
cores or a single core. The drop-down list shows core names for
endpoints in the selected UIA configuration and in the current
CCS target configuration. For the Context Aware Profile and
Task Load features, a specific core name is required (not ALL);
you can select or type a name.

■ In the Which Views to Open column, choose views to open
automatically. You can later open more views, but these
checkboxes provide an easy way to open a number of them.

7) Click Run to open the binary file you selected. This opens the System
Analyzer Log view and displays the events stored in the binary file.

8) See Section 4.5 for information about how to use the Log view.
Using System Analyzer in Code Composer Studio 4-18

Using the Log View
4.5 Using the Log View

The Log view opens automatically when you start a live data collection
session or open a binary or CSV file containing System Analyzer data.

Log View Column Descriptions

The System Analyzer Log view shows the details of all records. The log
contains the following columns:

❏ Row Number. This column indicates only the row number in the
current log display. If you filter the records displayed, all the row
numbers change.

❏ Type. Displays the event type. For live sessions and binary files, an
icon is shown. For CSV files, a numeric value is shown. This field lets
you quickly locate or filter certain types of events. A message can
have multiple types, such as Error and Analysis; the type with the
lower value is shown. For filtering, the type has a value from 0 to 11.

Table 4–1 Event Types

❏ Time. The time the event was logged in nanoseconds. The time in
this column has been adjusted and correlated on the host to provide
the global time based on a common timeline. The time is converted
to nanoseconds using the clock and cycle information provided in the
endpoint for each CPU in the UIA configuration.

❏ Error. A 1 in this column indicates that a a data loss error occurred.
A 2 indicates that an out-of-sequence error occurred. A 3 indicates

Icon Value Type Comments

0 Unknown

1 Error

2 Warning

3 Information

4 Details

5 Life Cycle

6 Analysis

7 Module 1 Module-specific type

8 Module 2 Module-specific type

9 Module 3 Module-specific type

10 Emergency

11 Critical
Using System Analyzer in Code Composer Studio 4-19

Using the Log View
that both types of error occurred. Data loss errors are detected if
SeqNo values are missing on a per logger basis. Out-of-sequence
errors are determined by comparing Global Time values. Such errors
can indicate that either records from a single core or between cores
are out-of-sequence. Individual views display a message in the
bottom status line if a data loss is detected.

❏ Master. The core on which the event was logged. For example,
C64XP_0 and C64XP_1.

❏ Message. A printf-style message that describes the logged event.
Values from the Arg0 through Arg8 arguments are plugged into the
message as appropriate. In general, messages beginning with "LM"
are brief messages, "LD" indicates a message providing details, "LS"
messages contain statistics, and "LW" indicates a warning message.

❏ Event. The type of event that occurred. Supported events include the
following:

■ Synchronization events (at startup)

■ CtxChg (for context change)

■ Pend, post, and block events from various modules

■ Load, ready, start, and stop events from various modules

■ Set priority and sleep events from the Task module

❏ EventClass. The class of the event that occurred. Supported event
classes include:

■ CPU (for Load events, for example from the ti.sysbios.utils.Load
module)

■ TSK (for task threads)

■ HWI (for hardware interrupt threads)

■ SWI (for software interrupt threads)

■ FUNC (for some Start and Stop events, for example from the
ti.uia.events.UIABenchmark module)

❏ Data1. The main information returned with an event. For many
events, Data1 returns the name of the task or the thread type in which
the event occurred.

❏ Data2. Further information returned with an event. For load events,
for example, Data2 returns the load percentage.

❏ SeqNo. The sequence number with respect to the source logger on
the source core. Each logger has its own sequence numbering. This
number is used when detecting data loss.
Using System Analyzer in Code Composer Studio 4-20

Using the Log View
❏ Logger. The name of the logger to which the event was sent. UIA
creates several default loggers, and your target code can configure
additional loggers.

❏ Module. The module that defines the type of event that occurred.
This may be a UIA module, SYS/BIOS module, XDCtools module, or
a RTSC module from some other software component. CCS adds an
underscore before the module name for certain types of events for
internal processing for other views.

❏ Domain. The module that logged the event.

❏ Local Time. The local timestamp on the core where the event was
logged. This timestamp typically has a higher resolution than the
global timestamp. Local timestamps are not correlated and adjusted
to show timing interactions with events on other cores.

❏ Arg1 to Arg 8. Raw arguments passed with the event. Although the
number of arguments associated with an event is not limited, typically
events are logged with 0, 1, 2, 4, or 8 arguments. If more than 8
arguments are logged, only the first 8 are shown here.

Log View Toolbar Icons and Right-Click Menu Commands

The Log view contains a number of toolbar icons that let you control the
view’s behavior.

❏ Toggle View With Group on and off (Shift+G). A "group"
synchronizes views of instrumentation data so that scrolling in one
view causes similar movement to happen automatically in another.
For example, if you group the CPU load graph with the Log view, then
click on the CPU Load graph, the Log view displays the closest
record to where you clicked in the graph. See Section 3.8.4.

❏ Click to turn on Bookmark Mode. The next record you click in
the log will be highlighted in red. Jump to a bookmarked event by
using the drop-down list next to the Bookmark Mode icon. Choose
Manage the Bookmarks from the drop-down list to open a dialog
that lets you rename or delete bookmarks. See Section 3.8.3.

❏ Auto Fit Columns sets the column widths in the Log to fit their
current contents.

❏ Refresh updates the GUI displays (F5). This button does not
collect data from the target.
Using System Analyzer in Code Composer Studio 4-21

Using the Log View
❏ Remove closes this System Analyzer session or file and all the
associated analysis features and views. If you close the Log view,
you are asked if you want to remove this session.

❏ Open the Find In dialog to search this log. See Section 3.8.5.

❏ Filter the log records to match a pattern by using the Set Filter
Expression dialog. See Section 3.8.6.

❏ Select Row Count from this drop-down to toggle the column
that shows row numbers in the log on and off.

Additional icons described in Section 4.2.1 differ depending on whether
you are running a live session or a stored file session and let you control
data transfer activity.

You can right-click on the Log
view to choose from a menu of
options. In addition to toolbar
commands, you can use the
following additional commands
from the right-click menu:

❏ Column Settings. Opens a
dialog that hides or displays
various columns. You can
change the alignment, font,
and display format of a
column (for example,
decimal, binary, or hex).

❏ Copy. Copies the selected
row or rows to the clipboard.

❏ Enable Auto Scroll. Allows
the log to scroll freely as new data is available. See Section 3.8.8.

❏ Data > Export Selected. Lets you save the selected rows to a CSV
(comma-separated value) file. See Section 3.8.7.

❏ Data > Export All. Lets you save all the rows to a CSV file. For
example, you might do this so that you can perform statistical
analysis on the data values.

❏ Groups. Lets you define and delete groups that contain various
types of log messages. See Section 3.8.4.

❏ Analyze. Start one of the analysis features. See Section 4.6.

❏ System Analyzer File or Session. Lets you pause, resume, and
reset a live or binary file session. Lets you stop or reset a CSV file
session. See Section 4.2.1, Managing a System Analyzer Session.
Using System Analyzer in Code Composer Studio 4-22

Opening System Analyzer Features
4.6 Opening System Analyzer Features

You can open System Analyzer analysis features in the Live Parameters
dialog. After you start a session, you can open additional analysis
features and views. The following analysis features are available:

❏ CPU Load. Shows the SYS/BIOS load data collected for all cores in
the system. See Section 4.7.

❏ Task Load. Shows the CPU load data measured within a SYS/BIOS
Task thread. See Section 4.8.

❏ Execution Graph. Shows threads on the target(s). See Section 4.9.

❏ Count Analysis. Tracks values on the target. See Section 4.10.

❏ Duration. Calculates the total duration between pairs of execution
points on the target. See Section 4.11.

❏ Context Aware Profile. Calculates duration with awareness of
interruptions by other threads and functions. See Section 4.12.

The CPU Load, Task Load, and Execution Graph features display
information automatically provided by SYS/BIOS. The Count Analysis,
Duration, and Context Aware Profile features display data only if you
modify your target code to instrument the required events.

Most analysis features support several views. For example: a summary
table, detail table, and a graph. The following table shows the types of
views available for each feature:

Table 4–2 Views Available for Various Analysis Features

Feature Summary View Detail View Graph View

Log No Yes (default) No

CPU Load Yes Yes Yes (default)

Task Load Yes Yes Yes (default)

Execution Graph No No Yes (default)

Count Analysis Yes (default) Yes Yes

Duration Yes (default) Yes Yes

Context Aware Profile Yes (default) Yes Yes (2 graphs: Exclude and Include)
Using System Analyzer in Code Composer Studio 4-23

Opening System Analyzer Features
To start or open an analysis feature, do either of the following:

❏ Open the Tools > System Analyzer menu in the main CCS menu
bar. Select your System Analyzer session from the list. Then select
the analysis feature to use. You can select another view for an
analysis feature you have already started during this session. Or you
can choose New and then a feature you want to start; the default
view for the new feature will open.
Using System Analyzer in Code Composer Studio 4-24

Opening System Analyzer Features
❏ Right-click on the Log view. From the context menu, choose Analyze
followed by the analysis feature to start.

When you choose to open an analysis feature, you are prompted to
choose whether to display events from ALL cores or a single core. You
can type the name of a core in this field. The drop-down list shows the
core names for endpoints in your currently selected UIA configuration file
along with core names for any active CCS target configuration for a
debugging session.
Using System Analyzer in Code Composer Studio 4-25

Opening System Analyzer Features
To open views other that the default view for an analysis feature that you
have already started, do any of the following:

❏ Right-click on an analysis view and choose another view for that
analysis feature. For example, in the CPU Load graph, you can right-
click and choose CPU Load views > Summary.

❏ Use the Analysis View icon in the main CCS toolbar. Select
your System Analyzer file or session from the drop-down list. Then
select the analysis feature you want to use. (Only features that have
been started are listed.) Then select the view you want to see.
Using System Analyzer in Code Composer Studio 4-26

Opening System Analyzer Features
❏ Open the Window > Open Analysis Views menu in the CCS menu
bar. Select your System Analyzer file or session from the list. Then
select the analysis feature you want to use. (Only features that are
currently open are listed.) Then select the view you want to see.

You can synchronize the scrolling and cursor placement in views for the
same session by clicking View with Group icon in the toolbars of
the views you want to synchronize.
Using System Analyzer in Code Composer Studio 4-27

Using the CPU Load View with System Analyzer
4.7 Using the CPU Load View with System Analyzer

The CPU Load feature shows the SYS/BIOS load data collected for all
CPUs in the system. The CPU load is the percentage of time a CPU
spends running anything other than the SYS/BIOS Idle loop.

To open this feature, choose Tools > System Analyzer > session_name
> CPU Load from the CCS menu bar.

Graph View for CPU Load

The Graph view opens by default. It shows the change in CPU load (as
a percentage) with time for each CPU. Clicking on the name of a CPU
above the graph highlights the corresponding line in the graph. (If you do
not see these buttons, right click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. Right-click on the graph to adjust the display
properties of the graph.

To open Summary or Detail views for this feature, use the
Analysis View icon in the main CCS toolbar or right-click on the CPU
Load graph and choose from the CPU Load views submenu.

❏ The Summary view presents the minimum, maximum, and average
CPU load. See Section 4.7.1.

❏ The Detail view presents the raw CPU load data. See Section 4.7.2.

See Also ❏ Section 3.2, Analyzing System Loading with System Analyzer
Using System Analyzer in Code Composer Studio 4-28

Using the CPU Load View with System Analyzer
4.7.1 Summary View for CPU Load

To open the Summary view for the CPU Load feature, use the
Analysis View icon in the main CCS toolbar or right-click on a CPU Load
view and choose CPU Load views > Summary.

The Summary view for the CPU Load feature shows the count, minimum,
maximum, and average of the reported CPU load measurements for
each CPU.

❏ Master. The name of the CPU.

❏ Count. The number of CPU load measurements for this CPU.

❏ Min. The minimum CPU load percentage reported for this CPU.

❏ Max. The maximum CPU load percentage reported for this CPU.

❏ Average. The average CPU load percentage for this CPU.
Using System Analyzer in Code Composer Studio 4-29

Using the CPU Load View with System Analyzer
4.7.2 Detail View for CPU Load

To open the Detail view for the CPU Load feature, use the
Analysis View icon in the main CCS toolbar or right-click on a CPU Load
view and choose CPU Load views > Detail.

The Detail view of the CPU Load feature shows records that report the
CPU load. The status bar tells how many records are shown and how
many gaps occurred.

❏ Time. The time (correlated with other cores) of this load event.

❏ Master. The name of the core on which the load was logged.

❏ Load. The CPU load percentage reported.

❏ Source. The source of the load percentage event.

The columns in this view are also displayed in the Log view (but in a
different order). See page 4–19 for column descriptions.

4.7.3 How CPU Load Works with System Analyzer

The CPU load is the percentage of time a CPU spends running anything
other than the SYS/BIOS Idle loop, which is run by the TSK_idle low-
priority Task thread.

The CPU Load feature displays data provided automatically by internal
SYS/BIOS calls to functions from the ti.sysbios.utils.Load module.
SYS/BIOS threads are pre-instrumented to provide load data using a
background thread.

See Section 5.2.1, Enabling and Disabling Load Logging for information
about how to disable CPU load logging.
Using System Analyzer in Code Composer Studio 4-30

Using the Task Load View with System Analyzer
4.8 Using the Task Load View with System Analyzer

The Task Load view shows CPU load data collected on a per-Task and
per-thread type basis for the specified CPU. Note that the Task Load
feature does not allow you to select all cores; you must select a single
core.

To open this feature, choose Tools > System Analyzer > session_name
> Task Load from the CCS menu bar.

Graph View for Task Load

The Graph view opens by default; it shows the change in load over time
on a per-Task basis as a line graph.

Click on the names of Tasks above the graph to highlight those lines in
the graph. If you don’t see the Task names, right-click on the graph and
choose Legend from the context menu. If you make the Graph view area
wider, more Task names will be shown.

To open other views for the Task Load feature, use the Analysis
View icon in the main CCS toolbar or right-click on a Task Load view and
choose from the Task Load views submenu.

❏ The Summary view presents the minimum, maximum, and average
load on a per-Task basis. See Section 4.8.1.

❏ The Detail view presents the raw Task load data. See Section 4.8.2.
Using System Analyzer in Code Composer Studio 4-31

Using the Task Load View with System Analyzer
Clicking on the name of a thread above the graph highlights the
corresponding line in the graph. (If you do not see these buttons, right
click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. Right-click on the graph to adjust the display
properties of the graph.

See Also ❏ Section 3.2, Analyzing System Loading with System Analyzer

4.8.1 Summary View for Task Load

To open the Summary view for the Task Load feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Task Load
view and choose Task Load views > Summary.

The Summary view for the Task Load feature shows the count, minimum,
maximum, and average of the reported Task load measurements for each
Task.
Using System Analyzer in Code Composer Studio 4-32

Using the Task Load View with System Analyzer
The CPU load is the percentage of time the CPU spent running anything
other than the SYS/BIOS Idle loop. The averages for all the sources listed
except for the CPU typically add up to approximately 100%. However,
that total may be somewhat different if events were dropped, particularly
when the load was high.

❏ Source. The name of the task or the thread type.

❏ Count. The number of CPU load measurements reported for this
task or thread type.

❏ Min. The minimum CPU load reported for this task or thread type.

❏ Max. The maximum CPU load reported for this task or thread type.

❏ Average. The average CPU load for this task or thread type.

4.8.2 Detail View for Task Load

To open the Detail view for the Task Load feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Task Load
view and choose Task Load views > Detail.

The Detail view of the Task Load feature shows all records that report the
load. These may be for individual Task threads, the Swi module, the Hwi
module, or the overall CPU load.

❏ Time. The time (correlated with other cores) of this load event.

❏ Master. The name of the core on which the load was logged.

❏ Source. The name of the task or thread type.

❏ Load. The CPU load percentage reported.

The columns in this view are also displayed in the Log view (but in a
different order). See page 4–19 for column descriptions.
Using System Analyzer in Code Composer Studio 4-33

Using the Execution Graph with System Analyzer
4.8.3 How Task Load Works with System Analyzer

The Task Load feature displays data provided automatically by internal
SYS/BIOS calls to functions from the ti.sysbios.utils.Load module.
SYS/BIOS threads are pre-instrumented to provide load data using a
background thread.

See Section 5.2.1, Enabling and Disabling Load Logging for information
about how to disable various types of load logging.

4.9 Using the Execution Graph with System Analyzer

The Execution Graph shows which thread is running at a given time. You
can open this feature by choosing Tools > System Analyzer >
session_name > Execution Graph from the CCS menu bar.
Using System Analyzer in Code Composer Studio 4-34

Using the Execution Graph with System Analyzer
Sources (cores and threads) are listed in the left column. Click on a
source to open an indented list of contexts for that source.

Click on a source named with the format <core name>.OS to open the list
of threads on that core. A colored line for each item shows when that
context is in control.

Source rows with the format <core name>.<thread name> show context
switches in green and running threads in blue. You can click these rows
to open them further to show their state. State transitions are indicated by
a vertical black line across the colored bar.

Click the Tree Mode icon to switch to a hierarchical mode where you
can expand and collapse context nodes.

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. You will likely need to zoom in a significant amount
to see the execution transitions that interest you.

Right-click on the graph to adjust the display properties of the graph.

See Also ❏ Section 3.3, Analyzing the Execution Sequence with System
Analyzer

4.9.1 How the Execution Graph Works with System Analyzer

The Execution Graph uses the same events as the Duration feature and
the Context Aware Profile. The Execution Graph displays data about
Task, Swi, and Hwi threads provided automatically by internal SYS/BIOS
calls. SYS/BIOS threads are pre-instrumented to provide such data using
a background thread.

Hwi and Swi can be expanded to list their threads separately only if you
enable logging of events for the Hwi and Swi modules. Such logging is
turned off by default for performance reasons. See Section 5.2.2,
Enabling and Disabling Event Logging for how to turn on and off Hwi and
Swi event logging.

If a data loss is detected, this graph displays the data loss using a narrow
black bar and a message is shown at the bottom of the graph.

If data returned to the host out of sequence, this graph may have
unpredictable behavior for state transitions beyond the visible range of
the graph.
Using System Analyzer in Code Composer Studio 4-35

Using the Count Analysis Feature with System Analyzer
4.10 Using the Count Analysis Feature with System Analyzer

The Count Analysis feature provides statistics and visualization
regarding a data value (32-bit signed) logged using a specific target-side
UIA event (UIAEvt_intWithKey). For example, you might want to use
Count Analysis to analyze how a data value from a peripheral changes
over time. Or, you might want to find the maximum and minimum values
reached by some variable or the number of times a variable is changed.
The analysis is done on groups of log records with matching formatted
strings that specify the source.

The Count Analysis feature displays data only if you modify your target
code to include UIAEvt_intWithKey events as described in Section
4.10.3.

To open this feature, choose Tools > System Analyzer > session_name
> Count Analysis from the CCS menu bar.

Summary View for Count Analysis

The Summary view is shown when you open the Count Analysis feature.
This view shows the count, minimum, maximum, average, and total of the
data values reported for each particular source.

This view provides only one record for each unique source. The columns
shown are as follows:

❏ Source. Statistics are performed on groups determined by
combining the core name with a formatted string passed to the
Log_writeX() call that created this record.

❏ Count. The number of instances of this source.

❏ Min. The minimum data value for this source.

❏ Max. The maximum data value for this source.

❏ Average. The average data value for this source.
Using System Analyzer in Code Composer Studio 4-36

Using the Count Analysis Feature with System Analyzer
❏ Total. The total data value for this source.

See page 4–21 for information about using the toolbar icons and right-
click menu in the Summary view.

To open other views for the Count Analysis feature, use the
Analysis View icon in the main CCS toolbar or right-click on the Count
Analysis view and choose from the Count Analysis views submenu.

❏ The Detail view presents all log records for the UIAEvt_intWithKey
event. See Section 4.10.1.

❏ The Graph view shows the change in the data value over time. See
Section 4.10.2.

See Also ❏ Section 3.4, Performing Count Analysis with System Analyzer

4.10.1 Detail View for Count Analysis

To open the Detail view for this feature, use the Analysis View
icon in the main CCS toolbar or right-click on a Count Analysis view and
choose Count Analysis views > Detail.

Each record in the Detail view corresponds to a specific
UIAEvt_intWithKey event logged on the target side.
Using System Analyzer in Code Composer Studio 4-37

Using the Count Analysis Feature with System Analyzer
You can export the records from the Count Analysis Detail view to a CSV
file that can be used by a spreadsheet. To do this, right-click on the view
and choose Data > Export All. You might do this in order to perform
statistical analysis on the primary and auxiliary data values.

❏ Time. This column shows the correlated time at which this event
occurred.

❏ Source. This column identifies the group for this event, which was
determined by combining the core name with the resulting formatted
string from the Log_writeX() call that created this record.

❏ DataValue. The value used for the analysis.

❏ AuxData1. These fields are used to pass auxiliary data that may
need to be observed. This is the Arg2 field of the input to the AF.

❏ AuxData2. This is the Arg3 field of the input to the AF.

See page 4–21 for information about using the toolbar icons and right-
click menu in the Detail view.

See Also ❏ Section 3.4, Performing Count Analysis with System Analyzer
Using System Analyzer in Code Composer Studio 4-38

Using the Count Analysis Feature with System Analyzer
4.10.2 Graph View for Count Analysis

To open the Graph view for the Count Analysis feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Count
Analysis view and choose Count Analysis views > Graph.

The Graph view shows changes in data values for each unique source.
When you open this view, you can choose the core or master whose data
values you want to plot (or all cores).

You can also choose whether to plot the data values against time or
sample number. By default, data values are plotted vs. time.

In some cases, such as when the data values change at irregular
intervals, you might want to plot the data values against the sample
number. For example:
Using System Analyzer in Code Composer Studio 4-39

Using the Count Analysis Feature with System Analyzer
Clicking on the name of a measurement above the graph highlights the
corresponding line in the graph. (If you do not see these buttons, right
click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. Right-click on the graph to adjust the display
properties of the graph.

4.10.3 How Count Analysis Works with System Analyzer

Count analysis works with log events that use the UIAEvt_intWithKey
event. This event is provided by the ti.uia.events.UIAEvt module. You
must add these events to your target code in order to see data in the
Count Analysis views.

The following call to Log_write6() logs an event that can be used by the
Count Analysis views:

Log_write6(UIAEvt_intWithKey, 0x100, 44, 0,

 (IArg)"Component %s Instance=%d", (IArg)"CPU", 1);

The parameters for this call are as follows:

1) Use UIAEvt_intWithKey as the first parameter to log an event for
Count Analysis.

2) The data value to be listed or plotted for this source. The value will
be treated as a 32-bit integer. In the previous example, the data value
is 0x100.

3) Additional data to be displayed in the AuxData1 column of the detail
view. This value is not plotted in the graph. The value will be treated
as a 32-bit integer. If you do not need to pass any auxiliary data here,
pass a placeholder value such as 0. In the previous example, the
auxData1 value is 44.

4) Additional data to be displayed in the AuxData2 column of the detail
view. This value is not plotted in the graph. The value will be treated
as a 32-bit integer. If you do not need to pass any auxiliary data here,
pass a placeholder value such as 0. In the previous example, the
auxData1 value is 0.
Using System Analyzer in Code Composer Studio 4-40

Using the Duration Feature with System Analyzer
5) A string to be used as the source for this record. Statistics are
performed on groups of records with matching sources in the
Summary view. Groups of records with matching sources are plotted
as a data series in the Graph view. This can be a formatted data
string such as, "Component %s Instance=%d". Since the values
passed after this string are "CPU" and 1, this record would belong to
a group of events that shares a formatted data string of "Component
CPU Instance=1"

6) Any variables to me used in the formatted data strong for the
previous parameter should be added from the sixth parameter on.

4.11 Using the Duration Feature with System Analyzer

The Duration analysis feature provides information about the time
between two points of execution on the target. These points must be
instrumented by adding code that passes the UIABenchmark_start and
UIABenchmark_stop events to calls to the Log_write1() function.

The Duration feature displays data only if you modify your target code to
include UIABenchmark events as described in Section 4.11.3.

The Duration feature matches start and stop pairs for each "source". A
source is identified by combining the core name and the arg1 argument
passed to the Log_write1() function when the event argument is
UIABenchmark_start or UIABenchmark_stop. For example, if the target
program on CPU_5 makes the following calls, the source identifier will be
"CPU_5, running".

Log_write1(UIABenchmark_start, (xdc_IArg)"running");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"running");

To open the Duration feature, choose Tools > System Analyzer >
session_name > Duration from the main CCS menu bar.
Using System Analyzer in Code Composer Studio 4-41

Using the Duration Feature with System Analyzer
Summary View for Duration Analysis

By default, the Summary view is shown when you open the Duration
feature. This view shows the count, minimum, maximum, average, and
total time measured between the start and stop times.

This view provides only one record for each unique source. The columns
shown are as follows:

❏ Source. This column shows the identifier that the Duration feature
uses to match up Start/Stop pairs.

❏ Count. The number of start/stop pairs that occurred for this source.

❏ Min. The minimum time in nanoseconds between start and stop for
this source.

❏ Max. The maximum time in nanoseconds between start and stop for
this source.

❏ Average. The average time in nanoseconds between start and stop
for this source.

❏ Total. The total time in nanoseconds between all start/stop pairs for
this source.

❏ Percent. The percent of the total time for all sources measured that
was spent in this source.

See page 4–21 for information about using the toolbar icons and right-
click menu in the Summary view.

To open Detail or Graph views for the Duration feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Duration
view and choose from the Duration views submenu.

❏ The Detail view presents the raw start and stop times for each
start/stop pair that has occurred. See Section 4.11.1.

❏ The Graph view shows the change in duration over time. See Section
4.11.2.

See Also ❏ Section 3.5, Benchmarking with System Analyzer
Using System Analyzer in Code Composer Studio 4-42

Using the Duration Feature with System Analyzer
4.11.1 Detail View for Duration Analysis

To open the Detail view for the Duration feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Duration
view and choose Duration views > Detail.

Each record in the Detail view corresponds to a pair of
UIABenchmark_start or UIABenchmark_stop events passed to the
Log_write1() function.

There are likely to be multiple records in this view for the same source if
the start/stop pairs are in threads that execute multiple times.

❏ Source. This column shows the identifier that the Duration feature
uses to match up Start/Stop pairs. See Section 4.11 for details.

❏ Start. A timestamp for when the UIABenchmark_start event
occurred.

❏ Stop. A timestamp for when the UIABenchmark_stop event
occurred.

❏ Duration. The Stop - Start time.

See page 4–21 for information about using the toolbar icons and right-
click menu in the Detail view.
Using System Analyzer in Code Composer Studio 4-43

Using the Duration Feature with System Analyzer
4.11.2 Graph View for Duration Analysis

To open the Graph view for the Duration feature, use the
Analysis View icon in the main CCS toolbar or right-click on a Duration
view and choose Duration views > Graph.

The Graph view shows the change in duration with time for each unique
source.

Clicking on the name of a measurement above the graph highlights the
corresponding line in the graph. (If you do not see these buttons, right
click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. Right-click on the graph to adjust the display
properties of the graph.
Using System Analyzer in Code Composer Studio 4-44

Using the Duration Feature with System Analyzer
4.11.3 How Duration Analysis Works with System Analyzer

The Duration feature matches pairs of UIABenchmark_start and
UIABenchmark_stop events (from the ti.uia.events.UIABenchmark
module) in target code for a given "source". These events are sent to the
host via calls to Log_write1().

A source is identified by combining the core name and the arg1 argument
passed to the Log_write1() function when the event argument is
UIABenchmark_start or UIABenchmark_stop. For example, if the target
program on CPU_5 makes the following calls, the source identifier will be
"CPU_5, process_1".

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIABenchmark.h>

...

Log_write1(UIABenchmark_start, (xdc_IArg)"process_1");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"process_1");

The Log_write1() function comes from the XDCtools xdc.runtime.Log
module. It is possible to use any of the Log_writeX() functions from
Log_write1() to Log_write8(). If you use a Log_writeX() function with
additional argument, all other arguments are ignored.

❏ The first parameter (UIABenchmark_start or UIABenchmark_stop)
is an event of type Log_Event.

❏ The second parameter is a source name string cast as an argument.

See Section 5.4.2, Enabling Event Output with the Diagnostics Mask for
information about how to enable and disable logging of UIABenchmark
events.

The Duration feature handles missing Start or Stop events by ignoring
events as needed.

❏ If a Start event is followed by another Start event for the same source,
the second Start event is ignored and the first Start event is used.

❏ If a Stop event is followed by another Stop event for the same source,
the second Stop event is ignored.

❏ If a Stop event occurs without a matching Start event for the same
source, the Stop event is ignored.

Check the Error column in the Log view for a value that indicates a data
loss occurred. See page 4–19 for details.
Using System Analyzer in Code Composer Studio 4-45

Using Context Aware Profile with System Analyzer
4.12 Using Context Aware Profile with System Analyzer

The Context Aware Profile feature calculates duration while considering
context switches, interruptions, and execution of other functions.

The Context Aware Profile displays data only if you modify your target
code to include UIABenchmark events as described in Section 4.12.3.

You can use this feature to see information about "inclusive time" vs.
"exclusive time".

❏ Inclusive time is the entire time between a given pair of start times
and stop times.

❏ Exclusive time is the inclusive time minus any time spent running
any other thread context. Time spent in called functions and time
spent running threads that preempt are yielded to by the thread being
measured are not counted in exclusive time.

See Section 4.12.3 for details about how inclusive and exclusive time are
calculated.

To open the Context Aware Profile, choose Tools > System Analyzer >
session_name > Context Aware Profile from the CCS menu bar. Note
that this feature does not allow you to select all cores; you must select a
single core.

Summary View for Context Aware Profile

By default, the Summary view opens, which shows the minimum,
maximum, average, and total number of nanoseconds within each thread
for the selected core. These statistics are reported both for inclusive and
exclusive time.
Using System Analyzer in Code Composer Studio 4-46

Using Context Aware Profile with System Analyzer
The summary view shows statistics about each duration context that was
measured. The statistics summarize multiple measurements made for
each context. The columns in this view are as follows:

❏ Name. The name of the item for this row of statistics.

❏ Count. The number of start/stop pairs that measured this item’s
duration.

❏ Incl Count Min. The minimum inclusive time measured.

❏ Incl Count Max. The maximum inclusive time measured.

❏ Incl Count Average. The average inclusive time measured.

❏ Incl Count Total. The total inclusive time measured.

❏ Incl Count Percent. The percent of all the inclusive times reported
due to this item.

❏ Excl Count Min. The minimum exclusive time measured.

❏ Excl Count Max. The maximum exclusive time that was measured.

❏ Excl Count Average. The average exclusive time measured.

❏ Excl Count Total. The total exclusive time measured.

❏ Excl Count Percent. The percent of all the exclusive times reported
due to this item.

To open Detail or Graph views, use the Analysis View icon in the
main CCS toolbar or right-click on a Context Aware Profile view and
choose from the Context Aware Profile views submenu.

❏ The Detail view presents the raw start and stop times for each
start/stop pair measured. See Section 4.12.1.

❏ The Graph view shows the change in duration over time. See Section
4.12.2.

See Also ❏ Section 3.5, Benchmarking with System Analyzer
Using System Analyzer in Code Composer Studio 4-47

Using Context Aware Profile with System Analyzer
4.12.1 Detail View for Context Aware Profile

To open the Detail view for the Context Aware Profile feature, use the
 Analysis View icon in the main CCS toolbar or right-click on a

Context Aware Profile view and choose Context Aware Profile views >
Detail.

The detail view shows a record for each start/stop pair of durations
recorded.

The columns in this view are as follows:

❏ Name. The name of the CPU combined with the function or thread
that was measured.

❏ Depth. The number of levels deep for this function context. The top-
level function has a depth of 0; functions called by the top-level have
a depth of 1, and so on.

❏ Incl Count. The inclusive time for this measurement.

❏ Excl Count. The exclusive time for this measurement.

❏ Start Time. The time in nanoseconds when this measurement was
started.

❏ End Time. The time in nanoseconds when this measurement was
stopped.
Using System Analyzer in Code Composer Studio 4-48

Using Context Aware Profile with System Analyzer
4.12.2 Graph Views for Context Aware Profile

To open a Graph view for this feature, use the Analysis View
icon in the main CCS toolbar or right-click on a Context Aware Profile
view and choose Context Aware Profile views > Graph(Excl) or
Graph(Incl).

The Inclusive and Exclusive graph views for the Context Aware Profile
show the change in duration for each context measured as a function of
time. For example, you might use this to see if a thread takes longer to
perform when the application has been running longer.

Clicking on the name of a measurement above the graph highlights the
corresponding line in the graph. (If you do not see these buttons, right
click on the graph and choose Legend.)

Use the toolbar buttons to group (synchronize), measure, zoom, search,
and filter the graph. Right-click on the graph to adjust the display
properties of the graph.
Using System Analyzer in Code Composer Studio 4-49

Using Context Aware Profile with System Analyzer
4.12.3 How Context Aware Profiling Works with System Analyzer

The Context Aware Profile feature matches pairs of start and stop events
from the ti.uia.events.UIABenchmark module. These events occur only if
you add code to your target application that calls Log_write3() and
passes the UIABenchmark_startInstanceWithAdrs and
UIABenchmark_stopInstanceWithAdrs events as parameters.

For example, the following code would produce a start/stop pair that
would be used by the Context Aware Profile for the myFunc() function:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIABenchmark.h>

void myFunc(){

 Log_write3(UIABenchmark_startInstanceWithAdrs,

 (IArg)"Func: id=%x, Fxn=%x", 0, (UArg)&myFunc);

 ...

 Log_write3(UIABenchmark_stopInstanceWithAdrs,

 (IArg)"Func: id=%x, Fxn=%x", 0, (UArg)&myFunc);

 return;

};

To profile the entire time spent in the function, your code would use the
UIABenchmark_startInstanceWithAdrs event at the beginning of the
function and the UIABenchmark_stopInstanceWithAdrs event just prior
to any line the could cause the function to return.

In the Log view the EventClass for these events is shown as "FUNC"
because a function reference is passed with the event to identify the
function that is being profiled.

The Log_write3() function comes from the XDCtools xdc.runtime.Log
module. It is possible to use any of the Log_writeX() functions from
Log_write3() to Log_write8(). If you use a Log_writeX() function with
additional arguments, all other arguments are ignored by the Context
Aware Profile feature. The parameters passed to Log_write3() are as
follows:

❏ evt. An event (UIABenchmark_startInstanceWithAdrs or
UIABenchmark_stopInstanceWithAdrs) of type Log_Event.

❏ arg0. A message string that must have the following format:
"Func: id=%x, Fxn=%x"

❏ arg1. Could be used in the future to specify the instance of the
function, but the Context Aware Profile currently expects a value of 0.

❏ arg2. A function reference to identify what this start/stop pair is
profiling.
Using System Analyzer in Code Composer Studio 4-50

Using Context Aware Profile with System Analyzer
See Section 5.4.2, Enabling Event Output with the Diagnostics Mask for
information about how to enable and disable logging of UIABenchmark
events. See Section 5.4.3, Events Provided by UIA for more about
UIABenchmark events.

The Context Aware Profile also uses context switching information about
Task, Swi, and Hwi threads to calculate the inclusive and exclusive time
between a start/stop pair. The following table shows whether various
types of contexts are included in inclusive and exclusive time. Since the
Duration views (page 4–41) are not context-aware, time spent in any
context is included in those views.

Table 4–3 Inclusive vs. Exclusive Time

The Context Aware Profile feature handles missing Start or Stop events
by ignoring events as needed.

❏ If a Start event is followed by another Start event for the same source,
the second Start event is ignored and the first Start event is used.

❏ If a Stop event is followed by another Stop event for the same source,
the second Stop event is ignored.

❏ If a Stop event occurs without a matching Start event for the same
source, the Stop event is ignored.

Check the Error column in the Log view for a value that indicates a data
loss occurred. See page 4–19 for details.

Context or Function Type

Counted for
Inclusive
Time

Counted for
Exclusive
Time

Counted for
Duration

Time spent in the specified function’s context. Yes Yes Yes

Time spent in functions called from the speci-
fied context. For example, you might want to
benchmark function A(), which calls functions
B() and C().

Yes No Yes

Time spent in other Task functions as a result
of preemption, yielding, and pend/post
actions.

Yes No Yes

Time spent in Hwi or Swi thread contexts. No No Yes
Using System Analyzer in Code Composer Studio 4-51

Using Context Aware Profile with System Analyzer
Using System Analyzer in Code Composer Studio 4-52

Chapter 5

UIA Configuration and Coding on the
Target

This chapter describes how to configure and code target applications
using UIA modules.

5.1 Quickly Enabling UIA Instrumentation . 5–2

5.2 Configuring SYS/BIOS Logging. 5–7

5.3 Customizing the Configuration of UIA Modules . 5–11

5.4 Target-Side Coding with UIA APIs. 5–33

Topic Page
5-1

Quickly Enabling UIA Instrumentation
5.1 Quickly Enabling UIA Instrumentation

You can begin analyzing data provided by UIA by enabling data collection
from pre-instrumented SYS/BIOS threads. Later, you can add target-side
code to collect additional data specific to your application.

Once you perform the necessary configuration, you will be able to view
UIA data in the Log view, CPU Load, Task Load, and Execution Graph
features. Only the Context Aware Profile and Duration features display no
data unless you modify your target code by adding benchmarking calls
as described in Section 4.11.3, How Duration Analysis Works with
System Analyzer and Section 4.12.3, How Context Aware Profiling
Works with System Analyzer.

In order to enable data collection from pre-instrumented SYS/BIOS
threads and have that data transferred from the target(s) to the host PC
running CCS, you must do the following:

Configuration Steps to Perform on All Targets

1) Remove Legacy Modules. Remove any statements in your
application’s configuration file (*.cfg) that include and configure the
following modules:

■ ti.sysbios.rta.Agent

■ xdc.runtime.LoggerBuf

■ ti.rtdx.RtdxModule

■ ti.rtdx.driver.RtdxDvr

If you have logger instances for the xdc.runtime.LoggerBuf, delete
those instances.

2) Use the LoggingSetup Module. Add the following statement to
include UIA’s LoggingSetup module in your application’s
configuration. For example:

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

Including the LoggingSetup module creates logger instances needed
by UIA and assigns those loggers to the modules that need them in
order to provide UIA data.

3) If you intend to use some method other than JTAG stop-mode to
upload events to the host, set the LoggingSetup.eventUploadMode
parameter as described in Configuring the Event Upload Mode, page
5-11. For example, you can use a non-JTAG transport such as
Ethernet or File, or a JTAG-dependent transport such as simulator or
JTAG run-mode. For example:

LoggingSetup.eventUploadMode = Upload_NONJTAGTRANSPORT;
UIA Configuration and Coding on the Target 5-2

Quickly Enabling UIA Instrumentation
4) Configure Physical Communication (such as NDK). You must
also configure physical communication between the cores. The
application is responsible for configuring and starting the physical
communication. For example, this communication may use the NDK.
See the target-specific examples provided with UIA (and NDK) for
sample code.

Configuration Steps to Perform on Multicore Targets Only

1) Configure the Topology. If your multicore application routes data
through a single master core, edit your application’s configuration file
to include UIA’s ServiceMgr module and configure MULTICORE as
the topology, and identify the master core using the
ServiceMgr.masterProcId parameter. For example:

var ServiceMgr =

 xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

ServiceMgr.masterProcId = 3;

The EVMTI816x routes to the ARM, which runs Linux. The EVM6472
routes to the master core. In general, if only one core can access the
peripherals, use the MULTICORE topology.

If each core in your multicore application sends data directly to CCS
on the host, configure the topology as Topology_SINGLECORE
(which is the default).

See Section 5.3.3 for more information about configuring the
topology.

2) Configure IPC. You must also configure and initialize IPC and any
other components needed to enable communication between the
cores. For example, you might also need to set up the NDK. See the
target-specific examples provided with UIA (and IPC) for sample
code. UIA may not be the only user of these resources, so it is left to
the application to configure and initialize them.

3) Configure GlobalTimestampProxy and CpuTimestampProxy.
You must configure the GlobalTimestampProxy parameter in the
LogSync module as described in Section 5.3.6. If the frequency of
your local CPU will change at run-time, you must also configure the
CpuTimestampProxy parameter.
UIA Configuration and Coding on the Target 5-3

Quickly Enabling UIA Instrumentation
5.1.1 Using XGCONF to Enable UIA Instrumentation

Instead of editing configuration scripts directly, you can use the XGCONF
tool within CCS to visually edit an application’s configuration. XGCONF
shows the RTSC modules—including XDCtools, SYS/BIOS, IPC, and
UIA—that are available for configuration.

XGCONF lets you add the use of modules to your application, create
instances, and set parameter values. It performs error checking as you
work, and so can save you time by preventing you from making
configuration errors that would otherwise not be detected until you built
the application.

For example, to add UIA instrumentation to a SYS/BIOS application that
uses the legacy ti.sysbios.rta.Agent and xdc.runtime.LoggerBuf
modules, follow these steps:

1) In CCS, right-click on the project and choose Show Build Settings.

2) In the Properties dialog, choose the CCS Build category, then the
RTSC tab.

3) In the Products and Repositories area, check the box next to UIA
and select the most recent version. This causes you application to
link with the necessary parts of UIA and makes the UIA modules
available within XGCONF.

4) Click OK.

5) Open the project’s configuration file (*.cfg) with XGCONF in CCS.
Notice that UIA is now listed in the Available Packages list under
Other Repositories. You can expand the UIA package to look at the
modules that are available.
UIA Configuration and Coding on the Target 5-4

Quickly Enabling UIA Instrumentation
6) If you see the ti.sysbios.rta.Agent module listed in the outline, right-
click on it and choose Stop Using Agent.

7) If a LoggerBuf logger is listed as shown above, select the right-click
on the logger instance and choose Delete. If you see error
messages, select the Source tab at the bottom of the center pane.
Delete all statements related to the logger instance, and save the file.

8) If the xdc.runtime.LoggerBuf module is listed in the outline, right-click
on it and choose Stop Using LoggerBuf.

9) If there are any RTDX modules or drivers, remove those from the
outline.

Remove
UIA Configuration and Coding on the Target 5-5

Quickly Enabling UIA Instrumentation
10) Expand the UIA package to find
the ti.uia.sysbios.LoggingSetup
module and drag it to the Outline.

11) Select the LoggingSetup module
in the Outline. Notice that the
properties for this module are
shown in the center pane. If you
see the configuration script
instead, click the Properties tab at
the bottom of this area.

12) Set a property. For example, you
can enable event logging for
individual Swi threads by setting
sysbiosSwiLogging to false.

13) Set other properties and add
other modules as needed.

14) Press Ctrl+S to save your
configuration file.
UIA Configuration and Coding on the Target 5-6

Configuring SYS/BIOS Logging
5.2 Configuring SYS/BIOS Logging

You can configure the types of SYS/BIOS events that are logged and sent
to System Analyzer.

❏ Load logging is enabled by default for CPU, Task, Swi, and Hwi
threads. As a result, information about loads for those items is
available in the CPU Load and Task Load features.

❏ Event logging used to display the Execution Graph is enabled by
default only for Task threads. You can enable it for Swi and Hwi
threads by configuring the LoggingSetup module.

See Section 5.4.2 for information about configuring other types of logging
messages.

5.2.1 Enabling and Disabling Load Logging

By default, all types of SYS/BIOS load logging are enabled as a result of
adding the LoggingSetup module to the configuration.

If you want to disable CPU Load logging, you would include the following
statement in your target application’s configuration file. However, note
that disabling CPU load logging also disables all other load logging.

LoggingSetup.loadLogging = false;

To disable Task, Swi, or Hwi load logging, you can use the corresponding
statement from the following list:

var Load = xdc.useModule('ti.sysbios.utils.Load');

Load.taskEnabled = false;

Load.swiEnabled = false;

Load.hwiEnabled = false;

Another way to disable load logging is to modify the setting of the
Load.common$.diags_USER4 mask, which controls whether load
logging is output. For example, the following statements disable all load
logging:

var Load = xdc.useModule('ti.sysbios.utils.Load');

var Diags = xdc.useModule('xdc.runtime.Diags');

Load.common$.diags_USER4 = Diags.ALWAYS_OFF;

The Load.common$.diags_USER4 mask is set to Diags.RUNTIME_ON
by the LoggingSetup module unless you have explicitly set it to some
other value.
UIA Configuration and Coding on the Target 5-7

Configuring SYS/BIOS Logging
5.2.2 Enabling and Disabling Event Logging

By default, the event logging used to display the Execution Graph is
enabled by default only for SYS/BIOS Task threads. As a result, the
Execution Graph can be expanded to show individual Task threads, but
shows all Swi thread execution as one row, and all Hwi thread execution
in another row without showing Swi and Hwi thread names.

Enabling Logging You can enable event logging for SYS/BIOS Swi and Hwi threads by
configuring the LoggingSetup module as follows:

LoggingSetup.sysbiosSwiLogging = true;

LoggingSetup.sysbiosHwiLogging = true;

Enabling event logging for Swi and Hwi allows you to see the execution
status of individual Swi and Hwi threads. Application performance may be
impacted if you enable such logging for applications with Swi or Hwi
functions that run frequently. In addition, logging many frequent events
increases the chance of dropped events.

For Task threads, the events logged are ready, block, switch, yield, sleep,
set priority, and exit events. For Swi threads, the events logged are post,
begin, and end events. For Hwi threads, the events logged are begin and
end events.

The following configuration statements enable logging of all function
entry and exit events by your application. This is because your main()
function and other user-defined functions (that is, for example, all non-
XDCtools, non-SYS/BIOS, non-IPC, and non-UIA modules) inherit their
default Diags configuration from the Main module’s Diags configuration.

Main.common$.diags_ENTRY = Diags.ALWAYS_ON;

Main.common$.diags_EXIT = Diags.ALWAYS_ON;

Disabling Logging To disable Task, Swi, Hwi, or Main event logging, you can use the
appropriate statement from the following list:

LoggingSetup.sysbiosTaskLogging = false;

LoggingSetup.sysbiosSwiLogging = false;

LoggingSetup.sysbiosHwiLogging = false;

LoggingSetup.mainLogging = false;
UIA Configuration and Coding on the Target 5-8

Configuring SYS/BIOS Logging
Another way to disable event logging is to modify the setting of the
common$.diags_USER1 and common$.diags_USER2 masks for the
appropriate module. This controls whether event logging is output. For
example, the following statements disable all event logging:

var Task = xdc.useModule('ti.sysbios.knl.Task');

Task.common$.diags_USER1 = Diags.ALWAYS_OFF;

Task.common$.diags_USER2 = Diags.ALWAYS_OFF;

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

Swi.common$.diags_USER1 = Diags.ALWAYS_OFF;

Swi.common$.diags_USER2 = Diags.ALWAYS_OFF;

var Hwi = xdc.useModule('ti.sysbios.hal.Hwi');

Hwi.common$.diags_USER1 = Diags.ALWAYS_OFF;

Hwi.common$.diags_USER2 = Diags.ALWAYS_OFF;

Main.common$.diags_USER1 = Diags.ALWAYS_OFF;

Main.common$.diags_USER2 = Diags.ALWAYS_OFF;

5.2.3 More About Diags Masks

Since logging is not always desired because of the potential impact on
the system performance, you can use the xdc.runtime.Diags module to
enable/disable logging both statically and dynamically on a global or per
module basis.

By default the ti.uia.sysbios.LoggingSetup module sets the following
diagnostics masks to Diags.RUNTIME_ON:

❏ diags_USER1 and diags_USER2: Main, Task, Semaphore, and
Event modules. These masks control event logging.

❏ diags_USER4: Main and Load modules. This mask controls load
logging.

❏ diags_USER3, diags_USER5, and diags_USER6: Main module.

❏ diags_STATUS: Main module. This mask controls the output of
some events provided in the ti.uia.events package.

❏ diags_ANALYSIS: Main module. This mask controls the output of
some events provided in the ti.uia.events package.

❏ diags_INFO: Main module. This mask controls the output of some
events provided in the ti.uia.events package.
UIA Configuration and Coding on the Target 5-9

Configuring SYS/BIOS Logging
For Swi and Hwi event logging, the diags_USER1 and diags_USER2
masks are set to Diags.RUNTIME_ON only if you have set
LoggingSetup.sysbiosSwiLogging or LoggingSetup.sysbiosHwiLogging
to true. By default, these are off.

This leaves other masks that are rarely or never used by UIA—
diags_ENTRY, diags_EXIT, diags_LIFECYCLE, diags_INTERNAL,
diags_ASSERT, diags_USER7, and diags_USER8—at their default
values.

The XDCscript portion of the CDOC online reference contains details
about which diagnostics masks must be enabled for particular events to
be logged.

Note: You should be careful about setting any Defaults.common$
parameters. Such parameter settings are inherited by all modules for which
the parameter is not explicitly set. This includes all XDCtools, SYS/BIOS,
IPC, and UIA modules.

5.2.4 Setting Diags Masks at Runtime

Runtime checking is performed when a diagnostics mask is set to
RUNTIME_ON. To improve performance by removing runtime checking,
you may want to change the configuration to use Diags.ALWAYS_ON or
Diags.ALWAYS_OFF.

If you configure a diagnostics mask to be set to Diags.RUNTIME_ON or
Diags.RUNTIME_OFF, your C code can change the setting at runtime by
calling the Diags_setMask() function. For example:

// turn on USER1 & USER2 events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi+1");

Diags_setMask("ti.sysbios.knl.Swi+2");

...

// turn off USER4 (load) events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi-4");

For information about the tradeoffs between Diags.ALWAYS_ON and
Diags.RUNTIME_ON, see Section 7.5.2 and its subsections in the
SYS/BIOS User’s Guide (SPRUEX3). Ignore any mention of the
ti.sysbios.rta.Agent module and RTDX; these are replaced by the
modules provided with UIA.

See Section 5.4.2 for more about runtime diagnostics configuration.
UIA Configuration and Coding on the Target 5-10

Customizing the Configuration of UIA Modules
5.3 Customizing the Configuration of UIA Modules

You can further customize the behavior of UIA modules as described in
the subsections that follow:

❏ Section 5.3.1, Configuring ti.uia.sysbios.LoggingSetup

❏ Section 5.3.2, Configuring ti.uia.services.Rta

❏ Section 5.3.3, Configuring ti.uia.runtime.ServiceMgr

❏ Section 5.3.4, Configuring ti.uia.runtime.LoggerCircBuf

❏ Section 5.3.5, Configuring ti.uia.runtime.LoggerSM

❏ Section 5.3.6, Configuring ti.uia.runtime.LogSync

You can further control UIA behavior through the following:

❏ Section 5.3.7, Configuring IPC

5.3.1 Configuring ti.uia.sysbios.LoggingSetup

In order to enable UIA instrumentation, your application’s configuration
file should include the ti.uia.sysbios.LoggingSetup module as follows:

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

See Section 5.2 for how to configure the types of events that are logged
and sent to System Analyzer.

Besides using the LoggingSetup module to configure event logging, you
can also configure the loggers that are created as a result of including this
module.

Configuring the
Event Upload Mode

By default, events are uploaded using the JTAG connection in stop-
mode. Events are uploaded over JTAG when the target halts. This mode
requires that JTAG connections are supported by the target.

If you want to use Ethernet, probe points, a simulator, or some other
method for uploading events, you can specify one of those upload
methods by configuring the LoggingSetup.eventUploadMode parameter.
For example, you could use the following if you were running a simulator:

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.eventUploadMode = Upload_SIMULATOR;
UIA Configuration and Coding on the Target 5-11

Customizing the Configuration of UIA Modules
The available upload modes are as follows:

Table 5–1 LoggingSetup.eventUploadMode Values

Value Description

Upload_SIMULATOR Events are written to LoggerProbePoint loggers
and are uploaded from a simulator at the time the
event is logged. This mode is not supported on
CPUs running multi-process operating systems
such as Linux.

Upload_PROBEPOINT Events are written to LoggerProbePoint loggers
and are uploaded at the time an event is logged.
The target is briefly halted when an event is
uploaded. This mode is not supported on CPUs
running multi-process operating systems such as
Linux.

Upload_JTAGSTOPMODE Events are uploaded over JTAG when the target
halts. This mode is not supported on CPUs running
multi-process operating systems such as Linux.
(This is the default mode.)

Upload_JTAGRUNMODE Events are uploaded directly from the circular buff-
ers via JTAG while the target is running. Note that
while events can be uploaded via JTAG, commands
cannot be sent to the target via JTAG. This mode is
currently supported only on C6x devices.

Upload_NONJTAGTRANSPORT Events are uploaded over the non-JTAG transport
specified by the ServiceMgr.transportType parame-
ter. For example, by Ethernet or File. See Section
5.3.3.
UIA Configuration and Coding on the Target 5-12

Customizing the Configuration of UIA Modules
The various event upload modes have different pros and cons. The
following table compares the various modes. Comments below the table
explain the columns in more detail.

Table 5–2 Comparison of Upload Event Modes

The only mode that does not require a JTAG connection is the
Upload_NONJTAGTRANSPORT mode. So, for targets that do not
support JTAG connections, this is the only event upload mode supported.

If you select a non-JTAG mode, you should also select a topology (single-
core or multicore) and a transport type (Ethernet, File, or user-defined).
See Section 5.3.3.1, Configuring the topology and Section 5.3.3.2,
Configuring the transportType for details.

The memory footprint is smaller for modes that do not use the ServiceMgr
framework.

The non-JTAG modes have a small performance impact on the
application because Log records are retrieved from a low-priority Task
thread by the ServiceMgr framework.

The modes listed as being easy to use are easy because there are very
few decisions to be made. The non-JTAG modes allow you to customize
the behavior of the ServiceMgr framework, so there are more choices
available to you.

Mode

Target and
Connection
Requirements

Memory
Footprint

Performance
Impact of
Log Records

Ease-of-
Use

Good for
Real
Hardware or
Multicore

Can Records Be
Dropped?

Simulator JTAG required smaller none easy No No

Probe Point JTAG required smaller none easy No No

JTAG Stop-Mode
(default)

JTAG required smaller none easy No Can be overwritten

JTAG Run-Mode JTAG required
C6x family only

smaller slight easy Yes Yes, if CCS cannot
keep up

Non-JTAG
Transport

no JTAG
required; various
transports sup-
ported

larger some more
complex

Yes Yes, if Rta cannot
keep up. Also
records not seen
when target halts.
UIA Configuration and Coding on the Target 5-13

Customizing the Configuration of UIA Modules
Only JTAG Run-Mode and Non-JTAG mode should be used for
applications with real-time constraints running on real (non-simulator)
hardware. The other modes do not handle these cases well because
halting the target when a record is written might interfere with real-time
interactions between cores and the real-time behavior of the application.

For JTAG Stop-Mode, records may be overwritten if the Logger buffer is
too small. For JTAG Run-Mode, records may be dropped if the CCS IDE
cannot keep up with the number of event logs received. For the non-
JTAG modes, records may be dropped if the Rta module cannot keep up
with the number of events; see Section 3.6.3, If System Analyzer Events
are Being Dropped to troubleshoot this problem. For the Non-JTAG
mode, if you halt the target, Log events are not sent to the host; they
remain on the target waiting for the application to resume running.

Default Logger
Instances

The LoggingSetup module creates logger instances for the following
purposes:

❏ SYSBIOS System Logger. Receives events related to SYS/BIOS
context-switching. For example, pend and post events for the
Semaphore and Event modules go to this log. The default size of this
logger is 32768 MADUs.

❏ Load Logger. Receives load information for the CPU, thread types
(Hwi and Swi), and Task functions. The default size of this logger is
1024 MADUs.

❏ Main Logger. Receives benchmarking information from pre-
instrumented objects and any events you add to the target code. The
default size of this logger is 32768 MADUs.

Loggers are responsible for handling events sent via APIs in the
xdc.runtime.Log module and the Log extension modules provided by UIA
(for example, LogSnapshot and LogSync).

You can use the default configuration provided by LoggingSetup simply
by adding the useModule statement, which was shown at the beginning
of this section.

Configuring Custom
Loggers

See the ti.uia.sysbios.LoggingSetup topic in the online help API
Reference (CDOC) for more information about this module.

Configuring Logger Buffer Sizes: Logger implementations drop events
if the buffer fills up before the events are collected by the Rta module. For
this reason, it is a good idea to make sure that the logger is large enough
to hold the events that it will receive during each period. Events generally
range in size from 8 bytes to 48 bytes. By default, Rta polls loggers every
UIA Configuration and Coding on the Target 5-14

Customizing the Configuration of UIA Modules
100 milliseconds. Depending on the period and number of events being
logged, you may want to change the size of the loggers. You can change
the default sizes of the three loggers created by LoggingSetup as follows:

LoggingSetup.loadLoggerSize = 2048;

LoggingSetup.mainLoggerSize = 16384;

LoggingSetup.sysbiosLoggerSize = 16384;

Configuring Your Own Loggers: Loggers are implementations of an
interface, ILogger, which is defined by XDCtools. By default, the loggers
created by LoggingSetup use the LoggerCircBuf implementation
provided with UIA.

See Section 5.3.4, Configuring ti.uia.runtime.LoggerCircBuf, for an
example that configures a custom logger before including the
LoggingSetup module. The example customizes the logger size and
memory section.

Note: You can only use loggers that inherit from ti.uia.runtime.IUIATransfer
with UIA. Currently only the ti.uia.runtime.LoggerCircBuf and
ti.uia.runtime.LoggerSMti.uia.runtime.LoggerSM implementations are
supported. You cannot use xdc.runtime.LoggerBuf with UIA.

If you have critical events that you want to instrument or want to be able
to filter the events in CCS based on the logger to which they were sent,
you can create additional loggers to be used by Log calls in your code.
See Section 5.3.4, Configuring ti.uia.runtime.LoggerCircBuf for details.

5.3.2 Configuring ti.uia.services.Rta

For non-JTAG event upload modes, UIA uses the ti.uia.services.Rta
module to provide a real-time analysis service. The Rta module enables
a service that collects events from logger instances and sends them to
the host.

Your application’s configuration file does not need to include the
ti.uia.services.Rta module, because it is automatically included when you
set the LoggingSetup.eventUploadMode parameter to
UploadMode_NONJTAGTRANSPORT.

Note: You should not include the ti.uia.services.Rta module in your
configuration file or set any of its parameters if you are using an
eventUploadMode other than UploadMode_NONJTAGTRANSPORT.
UIA Configuration and Coding on the Target 5-15

Customizing the Configuration of UIA Modules
By default, the Rta module collects events every 100 milliseconds. You
can configure a different interval as in the following example:

Rta.periodInMs = 500;

You should shorten the period if you are using a simulator. For example:

Rta.periodInMs = 5;

Setting the periodInMs parameter does not guarantee that the collection
will run at this rate. Even if the period has expired, the collection will not
occur until the current running Task has yielded and there are no other
higher priority Tasks ready.

Setting the period to 0 disables all collection of events.

When you include the Rta module, Rta automatically includes the
ti.uia.runtime.ServiceMgr module—the module that actually
communicates with the instrumentation host. The ServiceMgr module is
described in Section 5.3.3.

A periodInMs parameter is also provided by the ServiceMgr module.
When setting the Rta.periodInMs parameter, you should consider the
interactions between the settings you use for the SYS/BIOS clock interval
(in the ti.sysbios.knl.Clock module), the ServiceMgr.periodInMs
parameter, and the Rta.periodInMs parameter.

❏ The SYS/BIOS clock interval should be the shortest interval of the
three. By default it is 1 millisecond.

❏ The ServiceMgr.periodInMs parameter should be larger than the
SYS/BIOS clock interval, and it should be a whole-number multiple
of the SYS/BIOS clock interval. By default it is 100 milliseconds.

❏ The Rta.periodInMs parameter should be equal to or greater than the
ServiceMgr.periodInMs parameter, and it should also be a whole-
number multiple of ServiceMgr.periodInMs. By default it is 100
milliseconds.

In summary:

SYS/BIOS clock interval < ServiceMgr.periodInMs <= Rta.periodInMs

If periodInMs for ServiceMgr and Rta are too small, your system
performance may suffer because of all the context switches. If
periodInMs is too large, logger buffers may fill up before the period
elapses and you may lose data.

See the ti.uia.services.Rta topic in the online help API Reference (CDOC)
for more information about this module.
UIA Configuration and Coding on the Target 5-16

Customizing the Configuration of UIA Modules
5.3.3 Configuring ti.uia.runtime.ServiceMgr

The ti.uia.runtime.ServiceMgr module is responsible for sending and
receiving packets between the services on the target and the
instrumentation host.

When the LoggingSetup module includes the Rta module (because the
LoggingSetup.eventUploadMode is UploadMode_NONJTAGTRANSPORT),
Rta automatically includes the ti.uia.runtime.ServiceMgr module. If you
have a single-core application, you can use the default configuration of
the ServiceMgr module.

The ServiceMgr module provides three key configuration parameters in
setting up UIA for your device based on your architecture:

❏ topology. Specifies whether you are using a single-core or multicore
target. See Section 5.3.3.1.

❏ transportType. Specifies transport to use. See Section 5.3.3.2.

❏ masterProcId. If this is a multicore application, specifies which core
is routing events to the instrumentation host. See Section 5.3.3.3.

5.3.3.1 Configuring the topology

The default for the ServiceMgr.topology configuration parameter is
Topology_SINGLECORE, which means that each core on the device
communicates directly with the host.

If you have a multicore application and the routing of events to CCS is
done via a single master core (which then sends the data to CCS), you
must include the ServiceMgr module explicitly and configure
MULTICORE as the topology. For example:

var ServiceMgr =

 xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

The EVMTI816x routes to the ARM, which runs Linux. The EVM6472
routes to the master core. In general, if only one core can access the
peripherals, use the MULTICORE topology.

Communication with other cores is routed via the master core, which is
specified by the ServiceMgr.masterProcId parameter.

Routing between cores is done via Ipc's MessageQ module. ServiceMgr
uses IPC to discover the core configuration and to communicate between
the cores. The cores use MessageQ to talk to each other. The
masterProcId communicates to CCS. For ’C6472, the master core uses
NDK to send and receive TCP/UDP packets to and from CCS.
UIA Configuration and Coding on the Target 5-17

Customizing the Configuration of UIA Modules
Note: ServiceMgr expects the application to configure and initialize IPC.

If each core in your multicore application sends data directly to CCS on
the host, configure the topology as Topology_SINGLECORE and do not
specify a value for the masterProcId parameter.

5.3.3.2 Configuring the transportType

The ServiceMgr.transportType configuration parameter is used to specify
in the type of physical connection to use. For example:

ServiceMgr.transportType = ServiceMgr.TransportType_FILE;

The following transport options are available:

❏ TransportType_ETHERNET. Events and control messages are sent
between the host and targets via Ethernet. By default, the NDK is
used. The application is responsible for configuring and starting
networking stack.

❏ TransportType_FILE. Events are sent between the host and targets
via File over JTAG. (Note that control messages cannot be sent via
this transport.)

❏ TransportType_USER. You plan write your own transport functions
or use transport functions from some other source and specify them
using the ServiceMgr.transportFxns parameter. See Section 5.4.8,
Custom Transport Functions for Use with ServiceMgr if you plan to
use this option.

Not all transport options are supported on all devices.

If you do not specify a transportType, UIA picks an appropriate transport
implementation to use based on your device. The defaults are found
using the ti.uia.family.Settings module. If the device is unknown to
ServiceMgr, TransportType_ETHERNET is used.

Note: The transport type is ignored if you configure events to be uploaded
from a simulator, probe points, or JTAG (run-mode or stop-mode) using the
LoggingSetup.eventUploadMode parameter (see Section 5.3.1). By
default, the eventUploadMode is JTAG stop-mode, and the transportType
is ignored.
UIA Configuration and Coding on the Target 5-18

Customizing the Configuration of UIA Modules
5.3.3.3 Configuring the masterProcId

If this is a multicore application, you need to set the
ServiceMgr.masterProcId parameter to indicate which core you want to
act as the master core for UIA. All packets will be routed through the
master core to the instrumentation host.

The core ID numbers correspond the IPC’s MultiProc ID values. The
ServiceMgr module uses IPC to discover the core configuration and to
communicate between cores.

Note: The core chosen as the master must be started first.

For example to have core 3 be the masterProcId on a multicore device:

var ServiceMgr =

 xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.topology = ServiceMgr.Topology_MULTICORE;

ServiceMgr.masterProcId = 3;

5.3.3.4 Configuring Other ServiceMgr Parameters

You can configure how often the ServiceMgr gathers events from logs
and transfers them to the host. For example:

ServiceMgr.periodInMs = 200;

See Section 5.3.2, Configuring ti.uia.services.Rta for details on the
interactions between the ServiceMgr.periodInMs parameter, the
Rta.periodInMs parameter, and the SYS/BIOS clock interval.

UIA makes a distinction between event and message (control) packets.

❏ Event packets are large in order to hold several event records. For
example, if you are using an Ethernet transport, the maximum event
packet size is 1472 bytes, which includes the packet header. UIA
chooses the size and number of event packets based on the
transport and device. In a multicore architecture, you may want to
increase the value of the numEventPacketBufs parameter beyond
the default of 2 if a lot of logging is done on the non-master cores.
This will help reduce the number of events lost.

❏ Message (control) packets are small and hold only a control
message sent from the instrumentation host. The default message
packet size is 128 bytes. Note that control messages are only
supported via the Ethernet transport. The ServiceMgr.supportControl
parameter specifies whether control messages are enabled; it is set
automatically as a result of the transport that is used. Control packets
occur much less frequently than event packets, so it is rarely
UIA Configuration and Coding on the Target 5-19

Customizing the Configuration of UIA Modules
necessary to increase the number of control packet buffers. For
those rare cases, you can use the numIncomingCtrlPacketBufs and
numOutgoingCtrlPacketBufs parameters to configure the number of
message packets.

The ServiceMgr module uses one or two Task threads depending on
whether control message handling is enabled. By default, these Tasks
have a priority of 1, the lowest level. The receive Task receives control
messages from the instrumentation host and forwards them to the
transfer agent Task. The transfer agent Task handles all other activities,
including period management, event collection, communicating with
remote cores, and sending UIA packets to the instrumentation host. The
ServiceMgr module provides the following parameters for configuring the
priority, stack sizes, and placement of these tasks: rxTaskPriority,
rxTaskStackSize, rxTaskStackSection, transferAgentPriority,
transferAgentStackSize, and transferAgentStackSection.

See the ti.uia.runtime.ServiceMgr topic in the online help API Reference
(CDOC) for more information about this module.

5.3.4 Configuring ti.uia.runtime.LoggerCircBuf

As described in Section 5.3.1, Configuring ti.uia.sysbios.LoggingSetup,
UIA creates and uses several loggers to contain events.

Loggers are implementations of an interface, ILogger, which is defined by
XDCtools. By default, the loggers created by LoggingSetup use the
ti.uia.runtime.LoggerCircBuf implementation provided with UIA.

Note: You can only use loggers that inherit from ti.uia.runtime.IUIATransfer
with UIA. Currently only the ti.uia.runtime.LoggerCircBuf and
ti.uia.runtime.LoggerSM implementations are supported. You cannot use
xdc.runtime.LoggerBuf with UIA.

LoggerCircBuf maintains variable-length logger instances that store
events in a compressed, non-decoded format in memory. The
ti.uia.services.Rta module is responsible for copying the events out of
LoggerCircBuf and sending them to CCS on the instrumentation host.

Each core must have its own logger instances. Instances cannot be
shared among multiple cores due to the overhead that would be required
for multicore synchronization.
UIA Configuration and Coding on the Target 5-20

Customizing the Configuration of UIA Modules
You can use the LoggerCircBuf module to configure your own loggers for
UIA (instead of using ti.uia.sysbios.LoggingSetup’s defaults). This allows
you to configure parameters for the loggers, such as the section that
contains the buffer.

For example, the following statements configure a Load logger to be used
by LoggingSetup. The size is larger than the default and the logger is
stored in a non-default memory section:

var loggerCircBufParams = new LoggerCircBuf.Params();

loggerCircBufParams.transferBufSize = 2048;

/* must also place memory section via Program.sectMap */

loggerCircBufParams.bufSection = ’.myLoggerSection’;

var logger = LoggerCircBuf.create(loggerCircBufParams);

logger.instance.name = "Load Logger";

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.loadLogger = logger;

You can also create extra LoggerCircBuf instances to handle events from
certain modules. Since LoggerCircBuf (and logger implementations in
general) can drop events, it is advantageous to put critical events in a
dedicated logger instance. For example, the following code creates a
logger just for the Swi module.

var LoggerCircBuf =

 xdc.useModule('ti.uia.runtime.LoggerCircBuf');

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

/* Give the Swi module its own logger. */

var loggerCircBufParams = new LoggerCircBuf.Params();

loggerCircBufParams.transferBufSize = 65536;

var swiLog = LoggerCircBuf.create(loggerCircBufParams);

swiLog.instance.name = "Swi Logger";

Swi.common$.logger = swiLog;

/* Enable the Swi module to log events */

Swi.common$.diags_USER1 = Diags.RUNTIME_ON;

Swi.common$.diags_USER2 = Diags.RUNTIME_ON;

Events generally range in size from 8 bytes (Log_write0 with no
timestamp) to 48 bytes (Log_write8 with timestamp). Note that snapshot
and memory dump events can be even larger.
UIA Configuration and Coding on the Target 5-21

Customizing the Configuration of UIA Modules
See the ti.uia.runtime.LoggerCircBuf topic in the online help API
Reference (CDOC) for more information about this module.

5.3.4.1 Configuring a Shared LoggerCircBuf when Multiple Cores
Run the Same Image

If you have a single target image that is loaded onto multiple cores, and
the LoggerCircBuf loggers are stored in shared memory (for example,
external memory), you should set the LoggerCircBufParams.numCores
parameter to specify the number of cores running the same image.

The numCores parameter provides a solution to the problem that occurs
if the logger's buffer is in shared memory (for example, DDR). Since the
image is the same for all the cores, each core attempts to write to the
same buffer in the shared memory.

The following example shows how to set the numCores parameter for a
logger that is stored in shared memory.

var loggerCircBufParams = new LoggerCircBuf.Params();

loggerCircBufParams.transferBufSize = 1024;

loggerCircBufParams.numCores = 4;

/* must also place memory section via Program.sectMap */

loggerCircBufParams.bufSection = ’.sharedMemSection’;

var logger = LoggerCircBuf.create(loggerCircBufParams);

logger.instance.name = "Load Logger";

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

LoggingSetup.loadLogger = logger;

Setting numCores to a value greater than 1 causes LoggerCircBuf to
statically allocate additional memory to allow each core to have
transferBufSize amount of memory. The amount of memory allocated is
the logger’s transferBufSize * numCores.

Note: You should set the numCores parameter to a value greater than one
only if a single image is used on multiple cores of a multicore device and
the logger instance's buffer is stored in shared memory. Increasing
numCores in other cases will still allow the application to function, but will
waste memory.

The default value for numCores is 1, which does not reserve any
additional memory for the logger.
UIA Configuration and Coding on the Target 5-22

Customizing the Configuration of UIA Modules
5.3.5 Configuring ti.uia.runtime.LoggerSM

The LoggerSM logger implementation stores log records into shared
memory. It is intended to be used with a SoC system (such as
EVMTI816x) where Linux is running on the host core (such as CortexA8)
and SYS/BIOS is running on the targets (for example, M3 and DSP).

When a Log call is made on the target, the record is written into the
shared memory. On the Linux host, the records can be read from the
shared memory and either displayed to the console or written to a file to
be processed by System Analyzer at a later time.

Each target is assigned its own partition of the shared memory, and writes
its log events to that partition only.

For use on Linux, UIA ships a LoggerSM module that can be used to
process the records and a command-line application that can make use
of the LoggerSM module.

The example that uses LoggerSM on EVMTI816x is located in
<uia_install>\packages\ti\uia\examples\evmti816x. The tools for use on
Linux when the targets are using LoggerSM are located in
<uia_install>/packages/ti/uia/linux.

Constraints ❏ The shared memory must be in a non-cacheable region. LoggerSM
does not perform any cache coherency calls. You can place memory
in non-cached memory via different mechanisms on different target
types. For example, use ti.sysbios.hal.ammu.AMMU for the M3 cores
and the ti.sysbios.family.c64p.Cache module for the DSP on the
EVMTI816x. See the EVMTI816x examples provided with UIA for
details.

❏ The shared memory must be aligned on a 4096 boundary.
UIA Configuration and Coding on the Target 5-23

Customizing the Configuration of UIA Modules
❏ The shared memory must be in a NOLOAD section if multiple cores
are using the memory.

❏ All cores, including the targets and Linux ARM core, must have the
same size memory units, also called Minimum Addressable Data
Unit (MADU).

❏ Currently the targets and host must all have the same endianness.
Removing this restriction is a future enhancement. For example, the
EVMTI816x's CortexA8, DSP, and M3 all are little endian.

Configuring the
Targets

The following example configuration script causes a target to use the
LoggerSM module to place UIA events in shared memory:

var LoggerSM = xdc.useModule('ti.uia.runtime.LoggerSM');

var LoggingSetup =

 xdc.useModule('ti.uia.sysbios.LoggingSetup');

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

LoggerSM.sharedMemorySize = 0x20000;

LoggerSM.numPartitions = 3;

LoggerSM.partitionId = MultiProc.id;

LoggerSM.bufSection = ".loggerSM";

var logger = LoggerSM.create();

LoggingSetup.loadLogger = logger;

LoggingSetup.mainLogger = logger;

LoggingSetup.sysbiosLogger = logger;

Alternately, since only one LoggerSM instance is used for all logging, you
can create the logger instance and use it in all cases where logging
occurs as follows:

Defaults.common$.logger = LoggerSM.create();

The parameters you can set include:

❏ sharedMemorySize specifies the total size of the shared memory for
all targets. You must set this parameter to the same value on all
targets. The default size is 0x20000 MADUs. For example, on the
EVMTI816x, if the sharedMemorySize is 0x3000, each target—DSP,
videoM3 and vpssM3—would get 0x1000 MADUs of shared memory
for log records.

❏ numPartitions specifies the number of cores that can use the
shared memory. The memory will be divided into this number of equal
partitions. You must set this parameter to the same value on all
targets. The default is 3 partitions. If the sharedMemorySize is not
evenly divisible by 3, the extra memory is unused at the end of the
shared memory.
UIA Configuration and Coding on the Target 5-24

Customizing the Configuration of UIA Modules
❏ partitionID determines which partition this target uses. This value
must be different on all targets. For example, in the EVMTI816x
examples, the DSP gets partition 0, videoM3 gets 1, and vpssM3 gets
2. This corresponds with the IPC Multicore IDs. You can set this
parameter at runtime using the LoggerSM_setPartitionId() API,
which must be called before module startup occurs. For example,
you could call this function using the xdc.runtime.Startup.firstFxns
array.

❏ decode specifies whether the target decodes the record before
writing it to shared memory. The default is true, which means the
target decodes the record into an ASCII string and writes the string
into the shared memory. The Linux tool extracts the string and prints
it to the Linux console. This approach is expensive from a
performance standpoint. The benefit is that it is easy to manage and
view on the host.

If you set decode to false, encoded records are written to the shared
memory. The Linux tool writes the encoded records to a single binary
file (see page 5–27) that can be decoded by System Analyzer. This
approach makes Log module calls much faster on the target. Note
that different cores can have different decode values.

❏ overwrite determines what happens if the shared memory partition
fills up. By default, any new records are discarded. This mode allows
you to read the records while the target is running. If you set this
parameter to true, old records are overwritten by new records. In this
mode, records can only be read on Linux when the targets are halted
(or crashed), because both the target and host must update a read
pointer.

❏ bufSection specifies the section in which to place the logger’s buffer.
See the next section for details.

Placing the Shared
Memory

The bufSection parameter tells LoggerSM where to place the buffer it
creates. Each core’s bufSection must be placed at the same address. For
example, the EVMTI816x examples all place the ".loggerSM" section at
0x8f000000 with the following configuration statements:

LoggerSM.bufSection = ".loggerSM";

...

Program.sectMap[".loggerSM"] = new Program.SectionSpec();

Program.sectMap[".loggerSM"].loadAddress = 0x8f000000;

 // or loadSegment = "LOGGERSM";

Program.sectMap[".loggerSM"].type = "NOLOAD";
UIA Configuration and Coding on the Target 5-25

Customizing the Configuration of UIA Modules
Note that the "NOLOAD" configuration is required. Without this, as each
core is loaded, it would wipe out the previous core’s initialization of its
partition of the shared memory.

The LoggerSM module requires that all targets sharing the memory have
the same base address. To confirm all targets have the same address,
look at the address of the ti_uia_runtime_LoggerSM_sharedBuffer__A
symbol in all the targets’ mapfiles. The address must be the same on all
targets. This physical address must also be used in the Linux LoggerSM
and loggerSMDump tools.

There are several ways to place the shared memory for the .loggerSM
section. Here are two ways.

❏ The EVMTI816x LoggerSM examples use a custom platform file (in
ti/uia/examples/platforms) where an explicit memory segment is
created as follows:

 ["DDR_SR0", {name: "DDR_SR0", base: 0x8E000000,

 len: 0x01000000, space: "code/data",access: "RWX"}],

 ["DDR_VPSS", {name: "DDR_VPSS", base: 0x8F800000,

 len: 0x00800000, space: "code/data",access: "RWX"}],

 ["LOGGERSM", {name: "LOGGERSM", base: 0x8F000000,

 len: 0x00020000, space: "data",access: "RWX"}],

❏ You can create a custom memory map in the config.bld file as
follows:

 /* For UIA logging to linux terminal */

 memory[24] = ["LOGGERSM", {name: "LOGGERSM",

 base: 0x8F000000, len: 0x00020000, space: "data"}];

Using the Linux
LoggerSM Module

The non-XDC LoggerSM module knows how to read the shared memory
contents and process them. If the records are decoded, it displays them
to the Linux console. If the records are encoded, they are written (along
with the UIA events headers) into a binary file. This module is provided in
<uia_install>/packages/ti/uia/linux.

The two main APIs in this module are LoggerSM_run() and
LoggerSM_setName().

❏ LoggerSM_run() processes logs in all the partitions. The syntax is
as follows:

 int LoggerSM_run(unsigned int physBaseAddr,

 size_t sharedMemorySize,

 unsigned int numPartitions,

 unsigned int partitionMask,

 char *filename)
UIA Configuration and Coding on the Target 5-26

Customizing the Configuration of UIA Modules
■ physBaseAddr specifies the physical address of the shared
memory. The address used here must match the address
configured on all the targets.

■ sharedMemorySize specifies the total size of the shared
memory. This size must match the targets’ sharedMemorySize
parameter.

■ numPartitions specifies the number of partitions in the shared
memory. This must match the targets’ numPartitions parameter.

■ partitionMask is a bitmask to determine which partitions to
process. For example, if numPartitions is 3, but you only want to
process partitions 1 and 2, set the partitionMask to 0x6 (110b).

■ filename specifies a filename to use if encoded records are
found. If this is NULL, the default name is loggerSM.bin.
Encoded records from all targets that send encoded records are
placed in the same file. Since a UIA Packet header is also
included, System Analyzer can determine which records go with
which core.

This function returns LoggerSM_ERROR if any parameters are
invalid; otherwise, this function never returns.

❏ LoggerSM_setName() associates a name to a partition ID. Calling
this function for each target before you call LoggerSM_run() allows
the decoded output to include the name instead of just the partition
ID. The syntax is as follow:

 int LoggerSM_setName(unsigned int partitionId,

 char *name);

This function returns LoggerSM_SUCCESS if it is successful or
LoggerSM_ERROR if any parameters are invalid.

See the source code in LoggerSM.c and LoggerSM.h for more APIs.

Using the Linux
loggerSMDump
Tool

UIA also provides the loggerSMDump.c file, which shows how to use the
Linux LoggerSM module with the EVMTI816x board to send decoded
records to the console and encoded records to a binary file. This example
is provided in the <uia_install>/packages/ti/uia/examples/evmti816x
directory. The directory also includes a makefile to build the tool. the
loggerSMDump.c file calls both LoggerSM_setName() and
LoggerSM_run().

The command-line syntax is:

loggerSMDump.out <addr> <core_name> [<filename>]

To terminate the tool, press Ctrl+C.
UIA Configuration and Coding on the Target 5-27

Customizing the Configuration of UIA Modules
❏ addr. The physical address of the shared memory in Hex. The
shared memory physical address must be 4 KB aligned.

❏ core_name. The name of the cores that are processed. Valid names
are: "dsp", "video", "vpss", "m3" or "all". "m3" processes both video
and vpss. "all" processes all three targets.

❏ filename. If target sends encoded records, specify the name of the
file to store the encoded records. They can be decoded by System
Analyzer. This parameter is optional. If no filename is specified and
encoded events are found, the default file name is loggerSM.bin.

Here are some command-line examples:

./loggerSMDump.out 0x8f000000 video myBinaryFile

./loggerSMDump.out 0x8f000000 m3 myBinaryFile

./loggerSMDump.out 0x8f000000 all

This example shows output from loggerSMDump. In this case, the video
M3’s records were encoded, so they went into the binary file instead.

N:VPSS P:2 #:00113 T:00000000|21f447cd S:Start:

N:VPSS P:2 #:00114 T:00000000|21f637d3 S:Stop:

N:VPSS P:2 #:00115 T:00000000|21f69b15 S:count = 35

N:DSP P:0 #:00249 T:00000000|3ce48c2f S:Stop:

N:DSP P:0 #:00250 T:00000000|3ce5f28d S:count = 80

N:DSP P:0 #:00251 T:00000000|3d8689eb S:Start:

N:DSP P:0 #:00252 T:00000000|3da59483 S:Stop:

N:DSP P:0 #:00253 T:00000000|3da6facf S:count = 81

N:VPSS P:2 #:00116 T:00000000|22d92a23 S:Start:

N:VPSS P:2 #:00117 T:00000000|22db1689 S:Stop:

N:VPSS P:2 #:00118 T:00000000|22db7797 S:count = 36

Use the following legend to parse the output:

❏ N: name of the partition owner

❏ P: partition Id

❏ T: timestamp [high 32 bits | low 32 bits]

❏ S: decoded string

5.3.6 Configuring ti.uia.runtime.LogSync

Events that are logged by different CPUs are typically timestamped using
a timer that is local to that CPU in order to avoid the overhead of going
off-chip to read a shared timer.
UIA Configuration and Coding on the Target 5-28

Customizing the Configuration of UIA Modules
In order to correlate one CPU’s events with those logged by another
CPU, it is necessary to log "sync point events" that have, as parameters,
both the local CPU’s timestamp value and a "global timestamp" that was
read from a global shared timer. Any CPUs that log sync point events with
global timestamps read from the same global shared timer can be
correlated with each other and displayed against a common timeline for
analysis and comparison.

The ti.uia.runtime.LogSync module is provided in order to support this
type of event correlation. It provides sync events that are used to
correlate timestamp values. The Rta module handles all of the sync point
event logging that is required in order to support the event correlation.

In general, you will need to configure the LogSync module, but will not
need to call the module’s APIs from your application. For information
about LogSync module APIs, see Section 5.4.5.

Setting the Global
Timestamp Module
Proxy

If you have a multicore application, your application must configure the
GlobalTimestampProxy parameter on a target-specific basis to provide a
timestamp server.

This parameter defaults correctly for the C6472 and TCI6616 platforms.
However, for EVMTI816x, it defaults to null, which prevents any multicore
event correlation from being performed. In general, you can use a
timestamp module that implements the IUIATimestampProvider interface
for your target. You should configure the GlobalTimestampProxy as
follows:

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

var GlobalTimestampTimer =

xdc.useModule('ti.uia.family.c64p.TimestampC6472Timer');

LogSync.GlobalTimestampProxy = GlobalTimestampTimer;

❏ C6472. Use the ti.uia.family.c64p.TimestampC6472Timer module as
the proxy. When you use this proxy, the default value for the
maxCpuClockFreq is 700 MHz.

❏ TCI6616 (simulator). The ti.uia.family.c66.TimestampC66XGlobal
module should be the proxy.

❏ EVMTI816x. The ti.uia.family.dm.TimestampDM816XTimer module
should be the proxy. This setting is not auto-configured.
UIA Configuration and Coding on the Target 5-29

Customizing the Configuration of UIA Modules
❏ Other. If no module that implements the IUIATimestampProvider
interface for your target is available, you can use, for example, a
timer provided by SYS/BIOS as the global timer source for event
correlation "sync point" timestamps. The following statements
configure such as proxy:

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

var BiosTimer =

 xdc.useModule('ti.sysbios.family.c64p.TimestampProvider');

LogSync.GlobalTimestampProxy = BiosTimer;

If you are using a global timer that does not implement the
IUIATimestampProvider interface, you must also configure the
maxGlobalClockFreq parameter. If the maxGlobalClockFreq
parameter is not configured, you see a warning message at build
time that says UIA Event correlation is disabled. You must configure
both the maxGlobalClockFreq.lo and maxGlobalClockFreq.hi
parameters, which set the lower and upper 32 bits of the frequency,
respectively.

LogSync.maxGlobalClockFreq.lo = 700000000; //low 32b

LogSync.maxGlobalClockFreq.hi = 0; //upper 32b

If the CPU timestamp clock frequency is not 700 MHz, you must also
configure the lo and hi parameters. For example:

LogSync.maxCpuClockFreq.lo = 1000000000; //low 32b

LogSync.maxCpuClockFreq.hi = 0; //upper 32b

Setting the Local
Timestamp Module
Proxy

If the frequency of the local CPU may change at run-time, you also need
to configure the CpuTimestampProxy parameter of the LogSync module.
The timestamp proxies provided for this purpose are:

❏ ti.uia.family.c64p.TimestampC64XLocal

❏ ti.uia.family.c66.TimestampC66XLocal

Configuring the CpuTimestampProxy with a local timestamp module
allows applications that change the CPU frequency to report this
information to System Analyzer so that event timestamps can be
adjusted to accommodate the change in frequency.

The following configuration script shows how to configure the C66x Local
Timestamp module for use as the CpuTimestampProxy:

var TimestampC66Local =

 xdc.useModule('ti.uia.family.c66.TimestampC66Local');

TimestampC66Local.maxTimerClockFreq = {lo:1200000000,hi:0};

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

LogSync.CpuTimestampProxy = TimestampC66Local;
UIA Configuration and Coding on the Target 5-30

Customizing the Configuration of UIA Modules
Injecting Sync
Points into
Hardware Trace
Streams

Correlation with hardware trace (for example, the C64x+ CPU Trace) can
be enabled by injecting references to the sync point events into the
hardware trace stream. The LogSync.injectIntoTraceFxn parameter
allows you to inject sync point information into hardware trace streams.
You can specify a pointer to a function that handles the ISA-specific
details of injecting information into the trace stream.

For C64x+ Full-GEM (Generalized Embedded Megamodule) devices,
which support CPU trace and Advance Event Triggering (AET), use the
address of the GemTraceSync_injectIntoTrace() function provided by the
ti.uia.family.c64p.GemTraceSync module. For information about GEM,
see the TMS320C64x+ DSP Megamodule Reference Guide (SPRU871).

This example for the TMS320C6472 platform shows configuration
statements with multicore event correlation for the CPUs enabled. More
examples are provided in the CDOC for the LogSync module.

// Including Rta causes Log records to be collected and sent

// to the instrumentation host. The Rta module logs sync

// point events when it receives the start or stop

// command, and prior to sending up a new event packet if

// LogSync_isSyncPointEventRequired() returns true.

var Rta = xdc.useModule('ti.uia.services.Rta');

// By default, sync point events are logged to a dedicated

// LoggerCircBuf buffer named 'SyncLog' assigned to the

// LogSync module. A dedicated event logger buffer helps

// ensure that sufficient timing information is captured to

// enable accurate multicore event correlation. Configure

// LogSync.defaultSyncLoggerSize to set a buffer size.

var LogSync = xdc.useModule('ti.uia.runtime.LogSync');

// For C64x+ and C66x devices that provide CPU trace hardware

// capabilities, the following line enables injection of

// correlation information into the GEM CPU trace, enabling

// correlation of software events with the CPU trace events.

var GemTraceSync =

 xdc.useModule('ti.uia.family.c64p.GemTraceSync');

// Configure a shared timer to act as a global time reference

// to enable multicore correlation. The TimestampC6472Timer

// module implements the IUIATimestampProvider interface, so

// assigning this timer to LogSync.GlobalTimestampProxy

// configures LogSync's global clock params automatically.

var TimestampC6472Timer =

 xdc.useModule('ti.uia.family.c64p.TimestampC6472Timer');

LogSync.GlobalTimestampProxy = TimestampC6472Timer;
UIA Configuration and Coding on the Target 5-31

Customizing the Configuration of UIA Modules
Setting CPU-
Related Parameters

LogSync provides a number of CPU-related parameters—for example,
CpuTimestampProxy, cpuTimestampCyclesPerTick, maxCpuClockFreq,
and canCpuCyclesPerTickBeChanged. These parameters generally
default to the correct values unless you are porting to a non-standard
target. For example, the CpuTimestampProxy defaults to the same proxy
used by the xdc.runtime.Timestamp module provided with XDCtools.

Setting the globalTimestampCpuCyclesPerTick parameter is optional. It
is used to convert global timestamp tick counts into CPU cycle counts for
devices where there is a fixed relationship between the global timer
frequency and the CPU clock. For example:

LogSync.globalTimestampCpuCyclesPerTick = 6;

5.3.7 Configuring IPC

When ServiceMgr.topology is ServiceMgr.Topology_MULTICORE, the
underlying UIA code uses IPC (or more specifically its MessageQ and
SharedRegion modules) to move data between cores. See the IPC
documentation for details on how to configure communication between
cores for your multicore application.

The following IPC resources are used by UIA:

❏ Uses up to 4 message queues on each processor.

❏ Uses the SharedRegion heap when allocating messages during
initialization. Which SharedRegion heap is determined by the
IpcMP.sharedRegionId parameter. The default is SharedRegion 0.

❏ Determines the SharedRegion allocation size by the size and
number of packets. This is calculated using ServiceMgr parameters
as follows:

maxCtrlPacketSize *

(numIncomingCtrlPacketBufs + numOutgoingCtrlPacketBufs)

+ maxEventPacketSize * numEventPacketBufs

See Section 6.1, IPC and SysLink Usage for further information.

Note that, depending on the cache settings, these sizes might be
rounded up to a cache boundary.
UIA Configuration and Coding on the Target 5-32

Target-Side Coding with UIA APIs
5.4 Target-Side Coding with UIA APIs

By default, SYS/BIOS provides instrumentation data to be sent to CCS
on the host PC if you have configured UIA. It is not necessary to do any
additional target-side coding once UIA is enabled.

If you want to add additional instrumentation, you can do by adding C
code to your target application as described in the sections that follow.

In general, UIA provides a number of new events that can be using with
the existing Log module provided as part of XDCtools. Section 5.4.1
describes how to log events, Section 5.4.2 describes how to enable event
logging, and Section 5.4.3 provides an overview of the events provided
by UIA.

Section 5.4.4 describes the LogSnapshot module APIs, which allow you
to log memory values, register values, and stack contents.

Section 5.4.5 describes ways to configure and customize the
synchronization between timestamps on multiple targets.

Section 5.4.6 describes the APIs provided by the LogCtxChg module,
which allows you to log context change events.

Section 5.4.7 describes how to use the Rta module APIs to control the
behavior of loggers at runtime.

Section 5.4.8 explains how to create and integrate a custom transport.

5.4.1 Logging Events with Log_write() Functions

The Log_writeX() functions—Log_write0() through Log_write8()—
provided by the xdc.runtime.Log module expect an event as the first
argument. This argument is of type Log_Event.

The ti.uia.events package contains a number of modules that define
additional events that can be passed to the Log_writeX() functions. For
example, this code uses events defined by the UIABenchmark module to
determine the time between two calls:

#include <ti/uia/events/UIABenchmark.h>

...

Log_write1(UIABenchmark_start, (xdc_IArg)"start A");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"stop A");

In order to use such events with Log_writeX() functions, you must enable
the correct bit in the appropriate module’s diagnostics mask as shown in
Section 5.4.2 and choose an event to use as described in Section 5.4.3.
UIA Configuration and Coding on the Target 5-33

Target-Side Coding with UIA APIs
5.4.2 Enabling Event Output with the Diagnostics Mask

For an overview of how to enable SYS/BIOS load and event logging, see
Section 5.2. This section discusses how to enable logging of events
provided by the ti.uia.events module.

Whether events are sent to the host or not is determined by the particular
bit in the diagnostics mask of the module in whose context the
Log_writeX() call executes. For example, UIABenchmark events are
controlled by the ANALYSIS bit in the diagnostics mask.

For example, suppose you placed calls that pass UIABenchmark events
to Log_write1() in a Swi function to surround some activity you want to
benchmark.

Log_write1(UIABenchmark_start, (xdc_IArg)"start A");

...

Log_write1(UIABenchmark_stop, (xdc_IArg)"stop A");

If the ANALYSIS bit in the diagnostics mask were off for the Swi module,
no messages would be generated by these Log_write1() calls.

By default, the LoggingSetup module sets the ANALYSIS bit to on only
for the Main module, which affects logging calls that occur during your
main() function and other functions that run outside the context of a
SYS/BIOS thread. However, LoggingSetup does not set the ANALYSIS
bit for the Swi module.

To cause these benchmark events to be output, your configuration file
should contain statements like the following to turn the ANALYSIS bit for
the Swi module on in all cases:

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

var Diags = xdc.useModule('xdc.runtime.Diags');

var UIABenchmark =

 xdc.useModule('ti.uia.events.UIABenchmark');

Swi.common$.diags_ANALYSIS = Diags.ALWAYS_ON;
UIA Configuration and Coding on the Target 5-34

Target-Side Coding with UIA APIs
Alternately, you could enable output of UIABenchmark events within the
Swi context by setting the ANALYSIS bit to RUNTIME_OFF and then
turning the bit on and off in your runtime code. For example, your
configuration file might contain the following statements:

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

var Diags = xdc.useModule('xdc.runtime.Diags');

var UIABenchmark =

 xdc.useModule('ti.uia.events.UIABenchmark');

Swi.common$.diags_ANALYSIS = Diags.RUNTIME_OFF;

Then, your C code could contain the following to turn ANALYSIS logging
on and off. (See the online documentation for the
Diags_setMask()Diags_setMask() function for details about its control
string argument.)

// turn on logging of ANALYSIS events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi+Z");

...

// turn off logging of ANALYSIS events in the Swi module

Diags_setMask("ti.sysbios.knl.Swi-Z");

5.4.3 Events Provided by UIA

The ti.uia.events package contains a number of modules that define
additional events that can be passed to the Log_writeX() functions.
Section 5.4.2 uses the UIABenchmark_start and UIABenchmark_stop
events from the ti.uia.events.UIABenchmark module as an example.

To use an event described in this section, you must do the following:

❏ Include the appropriate UIA module in your .cfg configuration file. For
example:

var UIABenchmark =

 xdc.useModule('ti.uia.events.UIARBenchmark');

❏ Include the appropriate header files in your C source file. For
example:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIABenchmark.h>

❏ Use the event in your C source file. For example:

Log_write2(UIABenchmark_start, (xdc_IArg)"Msg %d",

 msgId);
UIA Configuration and Coding on the Target 5-35

Target-Side Coding with UIA APIs
The following UIA modules provide events you can use with the
Log_writeX() functions:

Table 5–3 Log_Event Types Defined by UIA Modules

See the online reference documentation (CDOC) for the modules in the
ti.uia.events package for more details and examples that use these
events.

The online reference documentation for the event modules in the
ti.uia.events package contains default message formats for each event in
the XDCscript configuration (red) section of each topic. A number of the
message formats for these events contain the special formatting
specifiers %$S and %$F.

❏ %$S — Handles a string argument passed to the event that can, in
turn, contain additional formatting specifiers to be interpreted
recursively. Note that you cannot use the $S formatting specifier in
strings passed as a parameter. For example, the message format for
the UIAErr_fatalWithStr event includes the 0x%x format specifier for

Module Events
Diagnostics
Control Bit Comments

UIABench-
mark

Start and stop events. Ver-
sions of start and stop let
you identify the instance of
the function being bench-
marked using a numeric ID,
an address, or a string.

diags_ANALYSIS UIABenchmark supports context-
awareness. That is, it reports time
elapsed exclusive of time spent in
other threads that preempt or oth-
erwise take control from the thread
being benchmarked.

UIAErr Numerous error events used
to identify common errors in
a consistent way.

diags_STATUS
(ALWAYS_ON by
default)

These events have an EventLevel
of EMERGENCY, CRITICAL, or
ERROR. Special formatting specifi-
ers let you send the file and line at
which an error occurred.

UIAEvt Events with detail, info, and
warning priority levels.

diags_STATUS or
diags_INFO
depending on level

An event code or string can be with
each event type.

UIAMessage Events for msgReceived,
msgSent, replyReceived,
and replySent.

diags_INFO Used UIA and other tools and ser-
vices to report the number of mes-
sages sent and received between
tasks and CPUs.

UIAStatistic Reports bytes processed,
CPU load, words processed,
and free bytes.

diags_ANALYSIS Special formatting specifiers let you
send the file and line at which the
statistic was recorded.
UIA Configuration and Coding on the Target 5-36

Target-Side Coding with UIA APIs
an integer error code and the %$S format specifier for a string that
may in turn contain format specifiers. This example uses that event:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIAErr.h>

...

Int myFatalErrorCode = 0xDEADC0DE;

String myFatalErrorStr = "Fatal error when i=%d";

Int i;

...

Log_write3(UIAErr_fatalWithStr, myFatalErrorCode,

 (IArg)myFatalErrorStr, i);

❏ %$F — Places the file name and line number at which the event
occurred in the message. The call to Log_writeX() for an event that
includes the %$F specifier in its formatting string should pass the
filename (using the __FILE__ constant string) and the line number
(using __LINE__). For example:

#include <xdc/runtime/Log.h>

#include <ti/uia/events/UIAErr.h>

...

Log_write2(UIAErr_divisionByZero, (IArg)__FILE__,

 __LINE__);

The resulting message might be:

"ERROR: Division by zero at demo.c line 1234."

The ti.uia.services.Rta module defines Log_Events that are use internally
when that module sends events to the host. You should not use these
events in application code.

5.4.4 LogSnapshot APIs for Logging State Information

You can use snapshot events to log dynamic target state information.
This lets you capture the execution context of the application at a
particular moment in time.

You call functions from the ti.uia.runtime.LogSnapshot module in order to
use a snapshot event. The diags_ANALYSIS bit in the module’s
diagnostics mask must be on in order for snapshot events to be logged.
(This bit is on by default.)

The LogSnapshot module provides the following functions:

❏ LogSnapshot_getSnapshotId() Returns a unique ID used to group
a set of snapshot events together.
UIA Configuration and Coding on the Target 5-37

Target-Side Coding with UIA APIs
❏ LogSnapshot_writeMemoryBlock() Generates a LogSnapshot
event for a block of memory. The output is the contents of the
memory block along with information about the memory block. See
Example 1 that follows.

❏ LogSnapshot_writeNameOfReference() This function lets you
associate a string name with the handle for a dynamically-created
instance. A common use would be to log a name for a dynamically-
created Task thread. The host-side UIA features can then use this
name when displaying data about the Task’s execution. You might
want to call this API in the create hook function for SYS/BIOS Tasks.
See Example 2 that follows.

❏ LogSnapshot_writeString() Generates a LogSnapshot event for a
string on the heap. Normally, when you log a string using one of the
Log APIs, what is actually logged is the address of a constant string
that was generated at compile time. You can use this API to log a
string that is created at run-time. This API logs the value of the
memory location that contains the contents of the string, not just the
address of the string. See Example 3 that follows.

Example 1: Logging
a Snapshot to
Display the
Contents of Some
Memory

For example, the following C code logs a snapshot event to capture a
block of memory:

#include <ti/uia/runtime/LogSnapshot.h>

...

UInt32* pIntArray = (UInt32 *)malloc(sizeof(UInt32) * 200);

...

LogSnapshot_writeMemoryBlock(0, "pIntArray",

 (UInt32)pIntArray, 200);

...

The following will be displayed for this event in the Message column of
the Log view, where pIntArray is the full, unformatted contents of the
array. Note that depending on the length of the memory block you specify,
the output may be quite long.

Memory Snapshot at demo.c line 1234
[ID=0,adrs=0x80002000,len=200 MAUs] pIntArray
UIA Configuration and Coding on the Target 5-38

Target-Side Coding with UIA APIs
Example 2: Logging
a Name for a
Dynamically-
Created Task

The following C code logs a Task name:

#include <ti/uia/runtime/LogSnapshot.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

...

// Task create hook function that logs the task name.

// Note: Task name is not required when creating a BIOS task.

// However, providing a name makes using the host-side

// analysis features easier to use.

Void tskCreateHook(Task_Handle hTask, Error_Block *eb) {

 String name;

 name = Task_Handle_name(hTask);

 LogSnapshot_writeNameOfReference(hTask,

 "Task_create: name=%s", name, strlen(name)+1);

}

The following text would be displayed for this event in the Message
column of the Log view if a handle to the "10msThread" were passed to
this tskCreateHook function.

nameOfReference at demo.c line 1234 [refID=0x80002000]

 Task_create: name=10msThread.

Example 3: Logging
the Contents of a
Dynamically-
Created String

The following C code logs the contents of the string stored in name.

#include <ti/uia/runtime/LogSnapshot.h>

...

Void myFunc(String name){

 ...

 LogSnapshot_writeString(0, name, (UInt32)name,

 strlen(name));

}

The following text will be displayed for this event, where ValueOfParm is
the value of the string rather than the address:

String Snapshot at demo.c line 1234 [snapshotID=0]

 Processing name=ValueOfParm
UIA Configuration and Coding on the Target 5-39

Target-Side Coding with UIA APIs
5.4.5 LogSync APIs for Multicore Timestamps

You can use sync events from the LogSync module to correlate
timestamp values in a multicore application. The host uses the difference
between the timestamp on the target and the global timestamp to
correlate the sequence of events across multiple targets.

The ti.uia.services.Rta module automatically uses the LogSync module
to send sync point events if the target has been suspended or halted
since the last time an event packet was sent to the host. It also sends
sync point events when you start or reset the Log view on the host.

Since the Rta module handles synchronization automatically, in most
cases you would only call functions from this module in your application
if you are using your own NDK stack and/or are writing a custom service
to take the place of the Rta module.

For information about configuring the LogSync module, see Section
5.3.6.

5.4.6 LogCtxChg APIs for Logging Context Switches

The ti.uia.runtime.LogCtxChg module provides a number of functions
that log context-switching events. In most cases, you would only use the
LogCtxChg APIs if you are instrumenting an OS other than SYS/BIOS.

SYS/BIOS automatically logs events for Task switches and Swi and Hwi
start and stop events. You only need to make sure the correct diagnostics
settings are enabled to see these events in the UIA analysis features.

In addition to functions that log Task, Swi, and Hwi events (which is done
automatically by SYS/BIOS), the LogCtxChg module also provides
functions to log changes in application, channel, frame, and user-defined
contexts. You might use these APIs in a SYS/BIOS application if you
need to keep track of contexts other than the normal threading contexts.
For example, the following C code logs a context change event that
identifies a newly loaded application ID:

#include <ti/uia/runtime/LogCtxChg.h>

...

Void loadApplication(Int newAppId){

 ...

 LogCtxChg_app("New AppID=0x%x",newAppId);

}

UIA Configuration and Coding on the Target 5-40

Target-Side Coding with UIA APIs
This event prints the Log call site (%$F) and a format string (%$S) that is
formatted with any additional arguments. The following text is an example
of what could be displayed for the event:

"AppID Ctx Change at Line 123 in appLoader.c

 [Prev. AppID = 0x1234] New AppID=0x1235"

5.4.7 Rta Module APIs for Controlling Loggers

The ti.uia.services.Rta module provides a number of APIs you can use to
control loggers and the transmission of data by Rta. When you use these
Rta APIs, you should be aware that the System Analyzer features on the
instrumentation host may also be sending similar requests to the target
in response to user activity within CCS.

Note: The Rta module is available only if you have set
LoggingSetup.eventUploadMode to UploadMode_NONJTAGTRANSPORT.

Rta provides several runtime APIs that let you control whether loggers
are enabled. These APIs are:

❏ Rta_disableAllLogs() disables all loggers serviced by Rta. All Log
records are discarded by a logger when it is disabled.

❏ Rta_enableAllLogs() enables all loggers that are currently disabled.

❏ Rta_resetAllLogs() empties the contents of all loggers serviced by
Rta. This function does not change the state of the loggers.

Rta provides runtime APIs to control the transmission of data. These
APIs are:

❏ Rta_startTx() tells Rta to begin reading the logs and sending the
records to the host.

❏ Rta_stopTx() tells Rta to stop reading the logs and sending them to
the host.

❏ Rta_snapshotAllLogs() allows the application to delay reading the
logs for the specified waitPeriod. The reset parameter tells Rta
whether it should reset all the logs.

Note some transports might require the host to send a "connect" request.
For example the TransportNdk needs to obtain the IP address of the host
before it can send events.

See the ti.uia.services.Rta topic in the online help for more information
about these APIs.
UIA Configuration and Coding on the Target 5-41

Target-Side Coding with UIA APIs
5.4.8 Custom Transport Functions for Use with ServiceMgr

The ti.uia.runtime.Transport module defines function prototypes for the
transport functions that can be plugged into the ServiceMgr. UIA ships
several implementations of this interface in the
<uia_install>\packages\ti\uia\sysbios directory.

The transport implementations do not have to be XDC modules. They are
simply files containing a set of standard C functions. For an example, see
<uia_install>\packages\ti\uia\sysbios\TransportNdk.c. Only one transport
set can be used on a target. The functions need to be configured at build
time via the ti.uia.runtime.ServiceMgr.transportFxns parameter. The
ServiceMgr module plugs the transportFxns automatically if the
ti.uia.runtime.ServiceMgr.transportType is set to TransportType_USER.

For example, if you or someone else creates a transport called RapidIO,
that transport can be plugged in by setting the transportType parameter
to ti.uia.runtime.ServiceMgr.TransportType_USER and then plugging the
transportFxns manually. It must also set up the following parameters as
directed by the developer of the new transport:

❏ ServiceMgr.supportControl. Set to true if the transport supports
receiving messages from the host. For example TransportFile does
not.

❏ ServiceMgr.maxEventPacketSize. Specify the maximum size of an
outgoing event packet. For example TransportNdk uses 1472, which
is the EMAC size minus the headers.

❏ ServiceMgr.maxCtrlPacketSize. Specify the maximum size of the
control message packets. This can be zero if supportControl is false.

These three parameters are undefined by default, so they must be set if
you are using TransportType_USER.
UIA Configuration and Coding on the Target 5-42

Target-Side Coding with UIA APIs
The following example shows a configuration script that plugs a transport
called "TransportXYZ" into the ServiceMgr module:

var ServiceMgr =

 xdc.useModule('ti.uia.runtime.ServiceMgr');

ServiceMgr.transportType = ServiceMgr.TransportType_USER;

var xyzTransport = {

 initFxn: '&TransportXYZ_init',

 startFxn: '&TransportXYZ_start',

 recvFxn: '&TransportXYZ_recv',

 sendFxn: '&TransportXYZ_send',

 stopFxn: '&TransportXYZ_stop',

 exitFxn: '&TransportXYZ_exit',

};

ServiceMgr.transportFxns = xyzTransport;

ServiceMgr.supportControl = true;

ServiceMgr.maxEventPacketSize = 1024

ServiceMgr.maxCtrlPacketSize = 1024;

The following list describes the transport functions. Note that all of these
functions are called by the ServiceMgr module. An application should not
call these functions directly. The function call syntax is shown in case you
are writing your own transport functions.

❏ initFxn() is called during module startup, which occurs before main()
runs. Minimal actions can take place at this point, since interrupts are
not yet enabled and the state of the application is just starting up.
Generally only internal initialization is performed by this function. This
function must have the following call syntax:

 Void (*initFxn)();

❏ startFxn() is called once or twice (depending on whether control
messages are supported) after the SYS/BIOS Task threads have
started to run.

■ This function is called with the UIAPacket_HdrType_EventPkt
argument before any events are sent. This allows the transport
to initialize anything needed for event transmission. The function
returns a handle to a transport-specific structure (or NULL if this
is not needed). This handle is passed to the sendFxn() and
stopFxn().

■ If the transport supports control messages from a host, startFxn()
is also called with the UIAPacket_HdrType_Msg argument. This
allows the transport to initialize anything needed for message
transmission (both sending and receiving). Again, the transport
can return a transport-specific structure. This structure can be
UIA Configuration and Coding on the Target 5-43

Target-Side Coding with UIA APIs
different from the one that was returned when the
UIAPacket_HdrType_EventPkt argument was passed to
startFxn().

This function must have the following call syntax:

 Ptr (*startFxn)(UIAPacket_HdrType);

❏ recvFxn() is called to receive incoming messages from the host. The
handle returned by the startFxn() is passed to the recvFxn(). Also
passed in is a buffer and its size. The buffer is passed in as a double
pointer. This allows the transport to double-buffer. For example, the
recvFxn() can return a different buffer than the one it was passed.
This potentially reduces extra copies of the data. The recvFxn() can
be a blocking call. The recvFxn() returns the actual number of bytes
that are placed into the buffer. If the transport does not support
control messages, this function can simply return zero. This function
must have the following call syntax:

 SizeT (*recvFxn)(Ptr, UIAPacket_Hdr**, SizeT);

❏ sendFxn() is called to send either events or messages. If sendFxn()
is called to transmit an event, the first parameter is the handle
returned from the startFxn(UIAPacket_HdrType_EventPkt) call.
Similarly, if a message is being sent, the first parameter is the handle
returned from the startFxn(UIAPacket_HdrType_Msg) call. The size
of the packet is maintained in the UIAPacket_Hdr. The sendFxn() can
be a blocking call. This function returns true or false to indicate
whether the send was successful or not. Again, a double pointer is
used to allow the transport to return a different buffer to allow double-
buffering. This function must have the following call syntax:

 Bool (*sendFxn)(Ptr, UIAPacket_Hdr**);

❏ stopFxn() is the counterpart to the startFxn() function. The stopFxn()
is called the same number of times as the startFxn(). The calls will
pass the handles returned by the startFxn(). This function must have
the following call syntax:

 Void (*stopFxn)(Ptr);

❏ exitFxn() is the counterpart to the initFxn() function. This function
must have the following call syntax:

 Void (*exitFxn)(Void);

Transports are allowed to have additional functions that can be directly
called by the application. For example in the provided TransportFile
transport, there is a TransportFile_setFile() function. The downside to
adding extended functions is that subsequent ports to a different
transport will require changes to the application code.
UIA Configuration and Coding on the Target 5-44

Chapter 6

Advanced Topics for System Analyzer

This chapter provides additional information about using System
Analyzer components.

6.1 IPC and SysLink Usage. .6–2

6.2 Linux Support for UIA Packet Routing .6–3

6.3 Rebuilding Sample Projects from the Command Line.6–5

6.4 Rebuilding Target-Side UIA Modules. .6–6

6.5 Benchmarks .6–7

Topic Page
6-1

IPC and SysLink Usage
6.1 IPC and SysLink Usage

This section lists the IPC and SysLink modules used on various types of
cores by UIA. It describes how they are used.

DSP/Video/VPSS

On a DSP, Video, or VPSS core, the ti.uia.runtime.ServiceMgr module
uses the following IPC modules.

❏ MessageQ. The ServiceMgr proxy creates four message queues.
Two are used to maintaining "free" messages. These are using
instead of allocating messages from a heap.

❏ SharedRegion. The ServiceMgr proxy allocates memory from the
SharedRegion at startup time. It places these buffers onto the "free"
message queues. Which SharedRegion to use is configurable.

❏ MultiProc. The ServiceMgr proxy uses this module to identify the
cores.

❏ Ipc. The ServiceMgr proxy uses the userFxn hook to make sure Ipc
is started before UIA tries to use it.

See Section 5.3.7, Configuring IPC for more information.

Note: The examples provided with UIA do not use IPC explicitly. They were
designed this way to make porting easier.

Linux ServiceMgr Module

In a core running Linux, the Linux ServiceMgr module uses IPC modules
as follows:

❏ MessageQ. ServiceMgr creates two message queues. One is used
to maintain "free" messages. These message queues are used
instead of allocating messages from a heap.

❏ SharedRegion. ServiceMgr allocates memory from SharedRegion
at startup time. It places these buffers onto the "free" message
queue. Which SharedRegion to use is configurable.

❏ MultiProc. ServiceMgr uses this module to identify the cores.

Linux Application

A Linux application running on a Linux master core uses the following
SysLink modules:

❏ SysLink. Used for setup and destroy calls.

❏ ProcMgrApp. Used to load the other cores.
Advanced Topics for System Analyzer 6-2

Linux Support for UIA Packet Routing
6.2 Linux Support for UIA Packet Routing

UIA currently supports the routing of UIA packets on Linux. By default,
events are sent out from the Linux core over Ethernet. They are not
written to a file by default.

Support for logging on Linux is currently available if you are using the
LoggerSM shared memory logger implementation on the EVMTI816x
platform. See Section 5.3.5, Configuring ti.uia.runtime.LoggerSM.

To use this routing capability, the ti\uia\linux\bin\servicemgr.a library must
be linked into your Linux application. The Linux application must call the
ServiceMgr_start() API after Ipc has been initialized. If must also call the
ServiceMgr_stop() API before Ipc is shutdown. For example code, see
the <uia_install>packages\ti\uia\examples\evmti816x\uiaDemo.c file.

Since the ServiceMgr on Linux is not an XDC module, you configure it
using the ServiceMgr_setConfig() API. There is also a corresponding
ServiceMgr_getConfig() API. Both functions are passed the following
configuration structure, which is specified in the ServiceMgr.h file:

typedef struct ServiceMgr_Config {

 Int maxCtrlPacketSize;

 Int numIncomingCtrlPacketBufs;

 Int sharedRegionId;

 Char fileName[128];

} ServiceMgr_Config;

Refer to the ServiceMgr.h file for details about the parameters.

If you do not call ServiceMgr_setconfig(), no usable defaults are supplied.
Advanced Topics for System Analyzer 6-3

Linux Support for UIA Packet Routing
The uiaDemo.c Linux application example basically performs the
following steps:

main()

{

 SysLink_setup()

 ProcMgrApp_startup() //on all cores specified on cmdline

 ServiceMgr_start()

 Osal_printf("\nOpen DVT and start getting events." \

 "[Press Enter to shutdown the demo.]\n");

 ch = getchar();

 ServiceMgr_stop()

 ProcMgrApp_shutdown() //on all cores specified on cmdline

 SysLink_destroy()

}

Advanced Topics for System Analyzer 6-4

Rebuilding Sample Projects from the Command Line
6.3 Rebuilding Sample Projects from the Command Line

In addition to building the sample projects in CCS, you can also build
them from the command line using the "xdc" command provided by
XDCtools. To do so, follow these steps:

1) Copy the complete directory for the example you want to use to a
working directory. The examples are provided in the
<uia_install>\packages\ti\uia\examples directory.

2) Make sure that your XDCPATH environment variable is set correctly.
For example, to build the evm6472 or simTCI6616 examples, the
following XDCPATH is needed. (Specify the actual locations of your
IPC, SYS/BIOS, and UIA installations.)

XDCPATH=

C:/Program Files/Texas Instruments/ipc_1_##_##_##/packages;

C:/Program Files/Texas Instruments/bios_6_##_##_##/packages;

C:/Program Files/Texas Instruments/uia_1_##_##_##/packages;

%NDK_INSTALL_DIR%/packages;

C:/Program Files/Texas Instruments/pdk_c6616_1_#_#_#/packages

where

NDK_INSTALL_DIR=

C:/Program Files/Texas Instruments/ndk_2_##_##_##

3) Change directory to your working directory.

4) Run the "xdc" command as follows:

%xdc
Advanced Topics for System Analyzer 6-5

Rebuilding Target-Side UIA Modules
6.4 Rebuilding Target-Side UIA Modules

Pre-built UIA libraries are supplied, but you can rebuild individual
modules using the "xdc" command provided by XDCtools. To rebuild a
module, follow these steps:

1) Copy and rename the supplied default config.bld file using the
following command:

%cp <uia_install>/uia_1_##_##_##/etc/config.bld.default

<uia_install>/uia_1_##_##_#/packages/config.bld

2) Edit the config.bld file.

3) Set the rootDir in config.bld to point to your installation of the
CodeGen tools.

4) In the Build.target array, comment out any build targets you do not
want to use. Then save the file.

5) Make sure that your XDCPATH environment variable is set correctly.
For example, to build the evm6472 or simTCI6616 examples, the
following XDCPATH is needed. (Specify the actual locations of your
IPC, SYS/BIOS, and UIA installations.)

XDCPATH=

C:/Program Files/Texas Instruments/ipc_1_##_##_##/packages;

C:/Program Files/Texas Instruments/bios_6_##_##_##/packages;

C:/Program Files/Texas Instruments/uia_1_##_##_##/packages;

%NDK_INSTALL_DIR%/packages;

C:/Program Files/Texas Instruments/pdk_c6616_1_#_#_#/packages

where

NDK_INSTALL_DIR=

C:/Program Files/Texas Instruments/ndk_2_##_##_##

6) Change directory to the desired directory. For example,

%cd <uia_install>/packages/ti/uia/runtime

7) Run the "xdc" command as follows:

%xdc
Advanced Topics for System Analyzer 6-6

Benchmarks
6.5 Benchmarks

Benchmark testing was performed for a SYS/BIOS application with UIA
load and event logging on the EVMTI816x and the EVM6472.

6.5.1 UIA Benchmarks for EVM6472

The benchmark test loads each core to 50% with application code. The
ti.sysbios.utils.Load module records both Task and CPU loads. All
communication to the instrumentation host is done by core 0 via the NDK.

Each UDP holds about 60 Log event records. For the test, both L1D and
L1P caches were enabled. Code was placed in SL2, and data in LL2. The
program was built for whole_program_debug.

The application calls Log_print() twice every millisecond. The CPU and
Task load information is collected every 500ms. Rta send events every
100ms.

Table 6–1 Benchmarking Results for EVM6472, Tests 1 and 2

Only Core 0 sending
events

All cores sending
events (via core 0)

UDP packets: 36/sec # UDP packets: 214/sec

Avg Packet Size: 1250 bytes Avg Packet Size : 1250 bytes

App load (core 0) : 50.1% App load (core 0): 50.0 %

Idle (core 0): 49.8% Idle (core 0): 49.2%

UIA (core 0): >.1% UIA (core 0): .5%

Hwi/Swi/Ndk/misc .1% Hwi/Swi/Ndk/misc .3%

Results for other cores:

Application load: 50.1%

Idle: 49.8%

UIA (core n): >.1%

Hwi/Swi/misc .1%
Advanced Topics for System Analyzer 6-7

Benchmarks
6.5.2 UIA Benchmarks for EVMTI816x

The simpleTask.c EVMTI816x example, which is provided in the
<uia_install>\packages\ti\uia\examples\evmti816x directory, has a Task
thread on each core (DSP, Video, VPSS) that runs an algorithm to flip the
bits on a large buffer every millisecond. The Task is released by a Clock
function that posts a semaphore. The example logs a
UIABenchmark_start/UIABenchmark_stop event before and after
running the algorithm.

For the first test, load events were logged every 500 ms, and
UIABenchmark events were performed around the algorithm. The
number of UDP packets/second was 126, and the number of
events/second was around 8000. The CPU loads obtained from these
events and "top" on Linux are provided in the following table.

Table 6–2 Benchmarking Results for EVMTI816x, Test 1

For the second test, event logging for Hwi, Swi, and Task threads was
added. Loads were again logged every 500 ms, and UIABenchmark
events were performed. The number of UDP packets/second was 1055,
and the number of events/second was around 51,000.

Table 6–3 Benchmarking Results for EVMTI816x, Test 2

Hwi Swi
App
Task

UIA
Task Idle

DSP .1 .12 .3 .1 99.39

Video .32 .33 3.62 .22 95.31

Vpss .31 .36 3.6 .22 95.52

usr sys nic io idle irq sirq

Arm 0 0 0 0 98 0 0

Hwi Swi
App
Task

UIA
Task Idle

DSP .36 .38 .33 .8 98.25

Video 1.05 1.09 3.89 1.58 92.43

Vpss .97 1.1 3.89 1.52 92.52

usr sys nic io idle irq sirq

Arm 0 9 0 0 88 0 1
Advanced Topics for System Analyzer 6-8

This is a draft version printed from file: uia_ugIX.fm on July 13, 2011
Index

%$F formatting specifier 5-36

%$S formatting specifier 5-36

A
Agent module

removing 5-2
alignment, shared memory 5-23
ALWAYS_ON/OFF diagnostics setting 5-34
ANALYSIS bit in diagnostics mask 5-9, 5-34, 5-36
Analysis Feature

definition 1-5
opening 4-23, 4-24
types 4-23

Analysis View icon 4-26
Analyze menu 4-22
ASSERT bit in diagnostics mask 5-10
Auto Fit Columns command 4-21
Auto Scroll command 4-22
Auto-detect configuration field 4-3, 4-17
AuxData column 4-38, 4-40

B
benchmarking

events 5-36
roadmap 3-10

benefits
new Rta module 5-15
System Analyzer 1-2
UIA 1-4

Binary File Parameters dialog 4-17
binary files 4-14

creating on Linux 5-26
opening 4-16

Bookmark Mode command 3-23, 4-21
bookmarks 3-23
bufSection parameter 5-21, 5-25
building

sample projects, command line 6-5
UIA libraries 6-6

C
caching, and shared memory 5-23
cannot connect to the target 3-12
CCS

definition 1-5
installation 2-2
project templates 3-15
version 5 required 2-2

CDOC help 1-12
circular buffers 5-20
Clear Log View command 4-6
Clock freq (MHz) field 4-13
clocks 5-16

CPU 5-32
frequency 5-30

Code Generation Tools 2-2
Column Settings command 4-22
communication diagram 1-9
component diagram 1-9
config.bld file 6-6
configuration

logging 5-7
quick steps 5-2
see also UIA configuration 4-9
UIA modules 5-11
using XGCONF 5-4

Connect command 4-6
Context Aware Profile 4-46

Detail view 4-48
how it works 4-50
roadmap 3-10
Summary view 4-46, 4-49

context change logging 5-40
Control and Status Transport 4-9
control packets 5-19
Copy command 4-22
core

definition 1-5
selecting in analysis view 4-4, 4-15, 4-18, 4-25

correlation of event times 5-28
Count Analysis 4-36

Detail view 4-37
Graph view 4-39
Index--1

 Index
how it works 4-40
roadmap 3-8
Summary view 4-36

CPU Load 4-28
Detail view 4-30
Graph view 4-28
how it works 4-30
roadmap 3-4
Summary view 4-29

CpuClockFreq parameters 5-30
CpuTimestampProxy parameter 5-3, 5-30, 5-32
critical events 5-21
CSV File Parameters dialog 4-14
CSV files 4-14

exporting 3-28, 4-22
opening 4-14
sample 4-14

Cycles per tick field 4-13

D
data collection 4-5
Data Export command 4-22
data loss 3-13

Context Aware Profile 4-51
Duration 4-45

Data1 column 4-20
Data2 column 4-20
DataValue column 4-38, 4-40
decode parameter 5-25
definitions 1-5
deployed system 3-2
Detail view

Context Aware Profile 4-48
Count Analysis 4-37
CPU Load 4-30
Duration Analysis 4-43
Task Load 4-33

Device Variant 3-17
diagnostics mask 5-9, 5-34

diags_ENTRY 5-8
diags_EXIT 5-8
diags_USER1 5-9
diags_USER2 5-9
diags_USER4 5-7
load logging 5-7
runtime setting 5-10

Diags module 5-7
Diags_setMask() function 5-35
disabling

event logging 5-8
load logging 5-7

Domain column 4-21
downloading installers 1-13

Doxygen 1-12
dropped

events 3-13, 4-45
packets 3-13

Duration Analysis 4-41
Detail view 4-43
Graph view 4-44
how it works 4-45
roadmap 3-10
Summary view 4-42

DVT
definition 1-5

DVT graph views 3-20

E
enabling event logging 5-8
endianness, shared memory 5-24
endpoint 4-9, 4-12
EndPoint Address field 4-12
ENTRY bit in diagnostics mask 5-10
Error column 4-19
errors

events 5-36
Ethernet 5-18

libraries 3-17
packet size 5-19

Event column 4-20
event correlation 5-28
event logging 5-8

disabling 5-8
enabling 5-8

event packets 5-19
Event Transport 4-9
EventClass column 4-20
EventLevel setting 5-36
events 5-35

definition 1-5
dropped 3-13
logging 5-33
not shown 3-12

eventUploadMode parameter 5-11
EVM6472

benchmark results 6-7
communication 1-11
examples 3-15, 3-16
GlobalTimestampProxy parameter 5-29
routing 5-3

EVMTI816x
benchmark results 6-8
communication 1-11
examples 3-15, 3-17
GlobalTimestampProxy parameter 5-29
routing 5-3
Index--2

Index
shared memory logger 5-23
examples 3-15

CSV file 4-15
exclusive time 4-46, 4-47, 4-48, 4-51
Execution Graph 4-34

Graph view 4-35
how it works 4-35
roadmap 3-6

EXIT bit in diagnostics mask 5-10
Export Data command 3-28, 4-22

F
file

.uia.xml file 4-13
creating binary on Linux 5-26
executable .out file 4-12
opening binary file 4-16
opening CSV file 4-14
save data to 4-5

File over JTAG 5-18
FILE transport 4-10
Filter command 3-26, 4-22
Find In command 3-24, 4-22
frequency of clocks 5-30

G
GEM (Generalized Embedded Megamodule) 5-31
GemTraceSync module 5-31
GlobalClockFreq parameters 5-30
GlobalTimestampProxy parameter 5-3, 5-29
glossary 1-5
Graph view

Count Analysis 4-39
CPU Load 4-28
Duration Analysis 4-44
Execution Graph 4-35
Task Load 4-31

Groups command 3-23, 4-22

H
hardware trace 5-31
help 1-12
host

communication 1-9
definition 1-5

Hwi module
disabling event logging 5-8
disabling load logging 5-7

enabling event logging 5-8

I
inclusive time 4-46, 4-47, 4-48, 4-51
INFO bit in diagnostics mask 5-9, 5-36
injectIntoTraceFxn parameter 5-31
instrumentation

background 1-2
methods 1-7

INTERNAL bit in diagnostics mask 5-10
IP address 4-10
IPC

configuring 5-3, 5-32
definition 1-5
resources used by UIA 5-32, 6-2
version 2-2

Ipc module 6-2

J
JTAG 5-18

definition 1-6
transport 4-10
upload mode 1-8, 5-13

L
LIFECYCLE bit in diagnostics mask 5-10
line graph views 1-1
Linux 5-23

LoggerSM module 5-23
packet routing 6-3

Linux developer 3-2
Live command, System Analyzer menu 4-3
Live Parameters dialog 4-3
live session 4-3
Load logger 5-14
load logging 5-7
Load module 5-7
loadLoggerSize parameter 5-15
Local Time column 4-21
Log module 5-33
Log view 4-19
Log_writeX() functions 5-33
LogCtxChg module 5-40
Logger column 4-21
logger instances 5-14
LoggerBuf module, removing 5-2
LoggerCircBuf module 5-20

loggers 5-15
Index--3

 Index
loggers
LoggerCircBuf 5-20
LoggerSM 5-23

loggerSM memory section 5-25
LoggerSM module

for Linux 5-23, 5-26
for non-Linux 5-23

LoggerSM_run() function 5-26
LoggerSM_setName() function 5-27
loggerSMDump tool 5-27
LoggingSetup module 5-2, 5-6, 5-11

diagnostics settings 5-34
disabling load logging 5-7

LogSnapshot module 5-37
LogSnapshot_getSnapshotId() function 5-37
LogSnapshot_writeMemoryBlock() function 5-38
LogSnapshot_writeNameOfReference() function 5-

38, 5-39
LogSnapshot_writeString() function 5-38, 5-39
LogSync module 5-28, 5-40

M
macros 1-7
MADU

definition 1-6
shared memory 5-24

Main logger 5-14
mainLoggerSize parameter 5-15
Manage the Bookmarks command 4-21
Master column 4-20
master core 5-17
masterProcId parameter 5-17, 5-19
MCSDK installation 2-2
measurement markers 3-22
memory map 5-26
memory section 5-25
Message column 4-20
message events 5-36
message packets 5-19
MessageQ module 1-11, 5-17, 5-32, 6-2
messages, definition 1-5
metadata files 4-13
missing date 4-45
Module column 4-21
multicore applications 5-3
MultiProc module 6-2

N
NDK 2-2, 5-3, 5-17

definition 1-6
transport 1-11

numCores parameter 5-22
numEventPacketBufs parameter 5-19
numIncomingCtrlPacketBufs parameter 5-20
numOutgoingCtrlPacketBufs parameter 5-20
numPartitions parameter 5-24

O
online documentation 1-12
overwrite parameter 5-25

P
packets 5-19

dropped 3-13
size for IPC 5-32

partitionID parameter 5-25
Pause/Resume command 4-6
PDK 2-2

Ethernet libraries 3-16
Percent column 4-42
periodInMs parameter 5-16
physical communication 5-3
platform file 5-26
Port Number field 4-10
print statements 1-2
Probe Point mode 1-8, 5-13
probe points 5-11
ProcMgrApp module 6-2
project templates 3-15

R
Refresh command 4-21
regular expression 3-25
Remove command 4-8, 4-22
Reset command 4-7
resetting logs 5-41
Restart command 4-7
Resume command 4-7
roadmaps

benchmarking 3-10
Context Aware Profile 3-10
Count Analysis 3-8
Duration 3-10
Execution Graph 3-6
system loading 3-4

routing of packets 5-17, 6-3
Row Count command 4-22
Rta module 5-15

APIs 5-41
Index--4

Index
communication 1-9
.rta.xml file 4-13
Rta_disableAllLogs() function 5-41
Rta_enableAllLogs() function 5-41
Rta_resetAllLogs() function 5-41
Rta_snapshotAllLogs() function 5-41
Rta_startTx() function 5-41
Rta_stopTx() function 5-41
RTDX

not supported 1-8
removing 5-2

RtdxDvr module 5-2
RtdxModule module, removing 5-2
RTSC, definition 1-6
RTSC-Pedia 1-13
RUNTIME_ON/OFF diagnostics setting 5-35

S
sample projects 3-15
saSampleData.csv file 4-15
scaling graph 3-21
Scroll Lock command 4-7
scrolling 3-29

synchronously 3-23
sections in memory 5-25
SeqNo column 4-20
service, definition 1-5
ServiceMgr framework 1-8
ServiceMgr module 5-17

communication 1-10
Linux 6-2, 6-3
transportType parameter 5-42

ServiceMgr_setConfig() function 6-3
session

managing 4-6
removing 4-8
starting live 4-3

shared memory 5-23
non-cacheable 5-23

sharedMemorySize parameter 5-24
SharedRegion module 5-32, 6-2
simulator 5-11

mode 1-8, 5-13
snapshot logging 5-37
spreadsheet, further analysis 3-9, 4-38
spreadsheets 3-28
statistical analysis 3-9, 4-22, 4-38
statistics logging 5-36
STATUS bit in diagnostics mask 5-9, 5-36
STM transport 4-10
Stopmode JTAG monitor field 4-13
Summary view

Context Aware Profile 4-46, 4-49

Count Analysis 4-36
CPU Load 4-29
Duration Analysis 4-42
Task Load 4-32

supportControl parameter 5-19, 5-42
Swi module

disabling event logging 5-8
disabling load logging 5-7
enabling event logging 5-8

synchronizing views 3-23
SYS/BIOS

clock 5-16
definition 1-6
version 2-2

SYSBIOS System logger 5-14
sysbiosLoggerSize parameter 5-15
SysLink 2-2

communication 1-11
definition 1-6
including in project 3-17

SysLink module 6-2, 6-4
System Analyzer

benefits 1-2
definition 1-5
features 4-2

System Analyzer Config command 4-10
System Analyzer configuration

saving 4-13
System Analyzer menu

Live command 4-3
system requirements 2-2
systemAnalyzerData.bin file 4-5

T
table views 3-20
target

communication 1-9
definition 1-5
supported 2-2

Task Load 4-31
Detail view 4-33
Graph view 4-31
how it works 4-34
roadmap 3-4
Summary view 4-32

Task module
disabling event logging 5-8
disabling load logging 5-7
enabling event logging 5-8
priority 5-20

Task threads 5-20
TCI6616

communication 1-11
Index--5

 Index
GlobalTimestampProxy parameter 5-29
TCP port 4-10
TCPIP transport 4-10
template projects 3-15
terminology 1-5
TI E2E Community 1-13
TI Embedded Processors Wiki 1-12
ticks 5-16
time 5-16
Time column 4-19, 4-30, 4-38
timer

global proxy 5-29
local proxy 5-30

TimestampC6472Timer module 5-29
TimestampC64XLocal module 5-30
TimestampC66XLocal module 5-30
TimestampDM816XTimer module 5-29
TimestampProvider module 5-30
timestamps 5-28, 5-40
toolbar icons 4-21
topology parameter 5-3, 5-17
transferBufSize parameter 5-21
Transport module 5-42
Transport Type 4-10
transports

communication 1-10
custom 5-42
functions 5-43

transportType parameter 5-18
troubleshooting 3-12
Type column 4-19

U
UART

definition 1-6
UDP port 4-10
UDP transport 4-10
UIA

benefits 1-4
definition 1-5
further information about 1-12
outside CCS 2-4

UIA Config dialog 4-9
UIA configuration

loading 4-13
using 4-4, 4-17

UIA packets, definition 1-5
UIA Statistic module 5-36
.uia.xml file 4-13
UIABenchmark module 5-36
UIABenchmark_start event 4-45, 5-33
UIABenchmark_startInstanceWithAdrs event 4-50
UIABenchmark_stop event 4-45, 5-33
UIABenchmark_stopInstanceWithAdrs event 4-50
uiaDemo.c example for Linux 6-4
UIAErr module 5-36
UIAEvt module 5-36
UIAEvt_intWithKey event 4-40
UIAMessage module 5-36
upload mode 5-11
use cases 3-2
USER bits in diagnostics mask 5-9
user types 3-2

V
View With Group command 4-21
views, types 3-20

W
wiki links 1-12
wrapper functions 1-7

X
XDCtools

definition 1-6
version 2-2

XGCONF tool 5-4

Z
zooming 3-21
Index--6

	System Analyzer User’s Guide
	Preface
	About This Guide
	Intended Audience
	Notational Conventions
	Documentation Feedback
	Trademarks

	Contents
	Overview of System Analyzer
	1.1 Introduction
	1.1.1 What Analysis and Visualization Capabilities are Provided?
	1.1.2 What the UIA Target Software Package Provides

	1.2 System Analyzer Terminology
	1.3 Using System Analyzer with Your Application Software
	1.3.1 Instrumenting Your Application Using UIA
	1.3.2 Capturing and Uploading Events Using UIA

	1.4 How Does System Analyzer Communicate over Non-JTAG Transports?
	1.4.1 Communication for EVM6472 Single-Core
	1.4.2 Communication for EVM6472 Multicore
	1.4.3 Communication for EVMTI816x
	1.4.4 Communication for TCI6616

	1.5 About this User Guide
	1.6 Learning More about System Analyzer

	Installing System Analyzer
	2.1 System Analyzer Installation Overview
	2.2 Installing System Analyzer as Part of a Larger Product
	2.3 Installing System Analyzer as a Software Update
	2.4 Installing and Using UIA Outside CCS

	Tasks and Roadmaps for System Analyzer
	3.1 Different Types of Analysis for Different Users
	3.2 Analyzing System Loading with System Analyzer
	3.3 Analyzing the Execution Sequence with System Analyzer
	3.4 Performing Count Analysis with System Analyzer
	3.5 Benchmarking with System Analyzer
	3.6 Troubleshooting System Analyzer Connections
	3.6.1 If You Cannot Connect to the Target with System Analyzer
	3.6.2 If No Events are Shown in System Analyzer Features
	3.6.3 If System Analyzer Events are Being Dropped
	3.6.4 If System Analyzer Packets are Being Dropped
	3.6.5 If Events Stop Being Show Near the Beginning
	3.6.6 If System Analyzer Events Do Not Make Sense
	3.6.7 If Data is Not Correlated for Multicore System
	3.6.8 If the Time Value is Too Large

	3.7 Creating Sample System Analyzer Projects
	3.7.1 Notes for EVM6472 MessageQ Project Templates
	3.7.2 Notes for EVMTI816x SimpleTask Project Templates
	3.7.3 Notes for Single-Core Stairstep Project Templates
	3.7.4 Notes for System Analyzer Tutorial Project Templates

	3.8 Special Features of System Analyzer Data Views
	3.8.1 Zoom (Graphs Only)
	3.8.2 Measurement Markers (Graphs Only)
	3.8.3 Bookmarks
	3.8.4 Groups and Synchronous Scrolling
	3.8.5 Find
	3.8.6 Filter
	3.8.7 Export
	3.8.8 Cursor and Scroll Lock

	Using System Analyzer in Code Composer Studio
	4.1 Overview of System Analyzer Features
	4.2 Starting a Live System Analyzer Session
	4.2.1 Managing a System Analyzer Session
	4.2.2 Removing a System Analyzer Session

	4.3 Configuring System Analyzer Transports and Endpoints
	4.4 Opening CSV and Binary Files Containing System Analyzer Data
	4.4.1 Opening a CSV File with System Analyzer
	4.4.2 Opening a Binary File with System Analyzer

	4.5 Using the Log View
	4.6 Opening System Analyzer Features
	4.7 Using the CPU Load View with System Analyzer
	4.7.1 Summary View for CPU Load
	4.7.2 Detail View for CPU Load
	4.7.3 How CPU Load Works with System Analyzer

	4.8 Using the Task Load View with System Analyzer
	4.8.1 Summary View for Task Load
	4.8.2 Detail View for Task Load
	4.8.3 How Task Load Works with System Analyzer

	4.9 Using the Execution Graph with System Analyzer
	4.9.1 How the Execution Graph Works with System Analyzer

	4.10 Using the Count Analysis Feature with System Analyzer
	4.10.1 Detail View for Count Analysis
	4.10.2 Graph View for Count Analysis
	4.10.3 How Count Analysis Works with System Analyzer

	4.11 Using the Duration Feature with System Analyzer
	4.11.1 Detail View for Duration Analysis
	4.11.2 Graph View for Duration Analysis
	4.11.3 How Duration Analysis Works with System Analyzer

	4.12 Using Context Aware Profile with System Analyzer
	4.12.1 Detail View for Context Aware Profile
	4.12.2 Graph Views for Context Aware Profile
	4.12.3 How Context Aware Profiling Works with System Analyzer

	UIA Configuration and Coding on the Target
	5.1 Quickly Enabling UIA Instrumentation
	5.1.1 Using XGCONF to Enable UIA Instrumentation

	5.2 Configuring SYS/BIOS Logging
	5.2.1 Enabling and Disabling Load Logging
	5.2.2 Enabling and Disabling Event Logging
	5.2.3 More About Diags Masks
	5.2.4 Setting Diags Masks at Runtime

	5.3 Customizing the Configuration of UIA Modules
	5.3.1 Configuring ti.uia.sysbios.LoggingSetup
	5.3.2 Configuring ti.uia.services.Rta
	5.3.3 Configuring ti.uia.runtime.ServiceMgr
	5.3.4 Configuring ti.uia.runtime.LoggerCircBuf
	5.3.5 Configuring ti.uia.runtime.LoggerSM
	5.3.6 Configuring ti.uia.runtime.LogSync
	5.3.7 Configuring IPC

	5.4 Target-Side Coding with UIA APIs
	5.4.1 Logging Events with Log_write() Functions
	5.4.2 Enabling Event Output with the Diagnostics Mask
	5.4.3 Events Provided by UIA
	5.4.4 LogSnapshot APIs for Logging State Information
	5.4.5 LogSync APIs for Multicore Timestamps
	5.4.6 LogCtxChg APIs for Logging Context Switches
	5.4.7 Rta Module APIs for Controlling Loggers
	5.4.8 Custom Transport Functions for Use with ServiceMgr

	Advanced Topics for System Analyzer
	6.1 IPC and SysLink Usage
	6.2 Linux Support for UIA Packet Routing
	6.3 Rebuilding Sample Projects from the Command Line
	6.4 Rebuilding Target-Side UIA Modules
	6.5 Benchmarks
	6.5.1 UIA Benchmarks for EVM6472
	6.5.2 UIA Benchmarks for EVMTI816x

	Index

