
Network Developer's Kit (NDK) Support
Package Ethernet Driver

Design Guide

Literature Number: SPRUFP2A
March 2015

SPRUFP2A—March 2015 Preface 2
Submit Documentation Feedback

Preface

About This Guide

This document describes the design of the Ethernet and Serial driver architecture in the NDK. Drivers
packaged as a part of the Network Developer's Kit (NDK) Support Package in NDK 2.x follow the generic
architecture described in this document.

Important Note:

• The setup and installation steps for each NDK Support Package (NSP) are provided in the Release
Notes provided with that NSP.

Intended Audience

This document is intended for writers of Ethernet and serial mini-drivers. This document assumes you
have knowledge of Ethernet and serial concepts.

Related Documents
The following books describe the Network Developer's Kit (NDK)"

• SPRU523 - Network Developer's Kit (NDK) Software User's Guide. Describes how to use the NDK
libraries, how to develop networking applications, and ways to tune the NDK to fit a particular
software environment.

• SPRU524 - Network Developer's Kit (NDK) Software Programmer's Reference Guide. Describes the
various API functions provided by the stack libraries, including the low level hardware APIs.

Notational Conventions
This document uses the following conventions:

• Program listings, program examples, and interactive displays are shown in a mono-spaced font.
Examples use bold for emphasis, and interactive displays use bold to distinguish commands you
enter from items that the system displays (such as prompts, command output, error messages, etc.).

• Square brackets ([and]) identify an optional parameter. If you use an optional parameter, you
specify the information within the brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.

Trademarks
The Texas Instruments logo and Texas Instruments are registered trademarks of Texas Instruments.
Trademarks of Texas Instruments include: TI, Code Composer, Code Composer Studio, DSP/BIOS,
TMS320, TMS320C6000, TMS320C64x, TMS320DM644x, and TMS320C64x+.

All other brand, product names, and service names are trademarks or registered trademarks of their
respective companies or organizations.

March 2015

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

Contents

1 Architecture Overview . 5
1.1 Acronyms . 5
1.2 Ethernet Driver Architecture . 6

1.2.1 NIMU-Specific Layer . 7
1.2.2 Ethernet Mini-Driver . 7
1.2.3 Serial Mini-Driver . 7
1.2.4 Generic EMAC/MDIO Chip Support Library. 8

1.3 Flow Charts. 9
1.4 Background. 11

1.4.1 Network Control (NETCTRL) Module . 11
1.4.2 Stack Event (STKEVENT) Object . 11
1.4.3 Packet Buffer (PBM) Object. 11
1.4.4 NDK Interrupt Manager . 11
1.4.5 Data Alignment . 12

1.5 API Overview . 13

2 NIMU Layer . 14
2.1 Overview of the NIMU Layer. 14
2.2 NIMU APIs . 14

3 Ethernet Mini-Driver Layer . 16
3.1 Overview. 16
3.2 Data Structures. 17
3.3 Ethernet Mini-Driver APIs . 18

3.3.1 HwPktInit — Initialize Packet Driver Environment . 19
3.3.2 HwPktOpen — Open Ethernet Device Instance . 19
3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts . 19
3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings . 20
3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands . 20
3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue . 21
3.3.7 _HwPktPoll — Mini-Driver Polling Function . 21

3.4 Configuration Variables . 21

4 Serial Mini-Driver Layer . 23
4.1 Overview. 23
4.2 Global Instance Structure . 24

4.2.1 PhysIdx: Physical index of this device (0 to n-1) . 24
4.2.2 Open: Open flag. 24
4.2.3 hHDLC: Handle to HDLC driver . 25
4.2.4 hEvent: Handle to scheduler event object . 25
4.2.5 PeerMap: 32 bit char escape map (for HDLC). 25
4.2.6 Ticks: Track timer ticks . 25
4.2.7 Baud: Serial Device Baud Rate . 25
SPRUFP2A—March 2015 Contents 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

Contents www.ti.com
4.2.8 Mode: Device Mode . 25
4.2.9 FlowCtrl: Flow Control Mode . 25
4.2.10 TxFree: Transmitter Free Flag . 25
4.2.11 PBMQ_tx: Tx queue. 26
4.2.12 PBMQ_rx: Rx queue . 26
4.2.13 hRxPend: PBM_Handle to packet being received . 26
4.2.14 pRxBuf: Pointer to next character in packet to receive . 26
4.2.15 RxCount: Number of bytes written to RX packet buffer so far . 26
4.2.16 RxCRC: RX CRC running total . 26
4.2.17 RxFlag: Flag indicating that next byte is the second half of an escape sequence. 26
4.2.18 hTxPend: PBM_Handle to packet being transmitted . 26
4.2.19 pTxBuf: Pointer to next character in packet to transmit . 27
4.2.20 TxCount: Number of bytes yet to send from to TX packet . 27
4.2.21 TxCRC: RX CRC running total. 27
4.2.22 TxFlag: Flag indicating that next byte is the second half of an escape sequence 27
4.2.23 cbRx: Pointer to character mode callback function . 27
4.2.24 cbTimer: Pointer to HDLC timer callback function . 27
4.2.25 cbInput: Pointer to HDLC input callback function. 27
4.2.26 TxChar: Second half of escape sequence. 27
4.2.27 CharReadIdx: Character buffer read index . 27
4.2.28 CharWriteIdx: Character buffer write index . 28
4.2.29 CharCount: Characters stored in character buffer . 28
4.2.30 CharBuf: Character mode input data buffer . 28

4.3 Serial Mini-Driver Operation . 29
4.3.1 Receive Operation . 29
4.3.2 Transmit Operation . 30

4.4 Serial Mini-Driver API . 30
4.4.1 HwSerInit - Initialize Serial Port Environment . 30
4.4.2 HwSerShutdown - Shutdown Serial Port Environment . 30
4.4.3 HwSerOpen - Open Serial Port Device Instance . 31
4.4.4 HwSerClose - Close Serial Port Device Instance . 31
4.4.5 HwSerTxNext - Transmit next buffer in transmit queue . 31
4.4.6 HwSerSetConfig - Set Serial Port Configuration . 32
4.4.7 HwSerPoll - Serial Polling Function . 32

5 Generic EMAC/MDIO CSL Layer . 33
5.1 Overview. 33
5.2 CSL Data Structures. 33
5.3 EMAC APIs. 33
5.4 Callback Functions . 34

5.4.1 pfcbGetPacket . 34
5.4.2 pfcbFreePacket . 35
5.4.3 pfcbRxPacket. 35
5.4.4 pfcbStatus . 35
5.4.5 pfcbStatistics . 35
4 Contents SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Chapter 1

Architecture Overview

This chapter provides an overview of the terminology and components involved in the Network
Developer's Kit Support Package (NSP) Ethernet driver. It also describes the architecture of such drivers.

1.1 Acronyms

The following acronyms are used in this document:

Table 1–1. Acronyms

Acronym Description

API Application Programming Interface

BD Buffer Descriptor

CSL Chip Support Library

DSP Digital Signal Processor

EMAC Ethernet Medium Access Protocol

LL Low Level Packet Driver

MDIO Management Data Input/Output Interface

NDK Network Developer's Kit

NIMU Network Interface Management Unit

NSP NDK Support Package

OSAL Operating Systems Abstraction Layer

Rx Receive Operation

SGMII Serial Gigabit Media Independent Interface

Tx Transmit Operation

Topic Page

1.1 Acronyms . 5

1.2 Ethernet Driver Architecture . 6

1.3 Flow Charts . 9

1.4 Background. 11

1.5 API Overview. 13
SPRUFP2A—March 2015 Architecture Overview 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

Ethernet Driver Architecture www.ti.com
1.2 Ethernet Driver Architecture

The following diagram shows the architecture of the Ethernet driver design in the NDK 2.0 Support
Package (NSP).

This new NSP Ethernet driver architecture consists of the following components:

• NIMU-specific layer, which acts as the interface between the NDK stack and the Ethernet driver.
See Section 1.2.1.

• Ethernet mini-driver, which manages the EMAC configuration using the CSL. Also manages DSP
interrupts and memory allocation for packet buffers in buffer descriptors using the NDK Operating
Systems Abstraction Layer (OSAL). See Section 1.2.2.

• Serial mini-driver, which manages all device configuration, communication, memory and packet
buffer allocations, and hardware interrupts as required by the serial device.

• Generic EMAC/MDIO Chip Support Library (CSL), which contains the generic APIs and data
structures needed to control and configure EMAC/MDIO peripherals. Also manages buffer
descriptors and interrupt service routines. The CSL layer is optional—the TI-RTOS Ethernet and
serial drivers do not use the CSL layer. See Section 1.2.4.

The NIMU-specific layer in previous versions of the NDK was generic enough to be ported to different
platforms with ease. However, the mini-driver was not easily portable and had to be rewritten from scratch
every time it had to be ported to a new platform. This led to different flavors of the Ethernet device drivers
for different platforms—thus increasing the development, maintenance, and debugging effort.
6 Architecture Overview SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Ethernet Driver Architecture
To overcome the limitations of this architecture, the architecture of Ethernet drivers in the NSPs have
been reorganized to optimize for a better development and debugging experience. The Generic
EMAC/MDIO Chip Support Library (CSL) component is new; it has been split apart from the Ethernet
mini-driver component to better isolate portions that commonly require changes when porting.

1.2.1 NIMU-Specific Layer

The Network Interface Management Unit (NIMU) specific layer acts as the interface between the
Ethernet, serial, or other physical device and the NDK core stack. It provides an implementation for the
APIs defined by the NIMU specification for this EMAC device. These APIs let the NDK core stack control
and configure the physical device at runtime and transmit packets. They also enable the driver to hand
any received packets back to the stack.

This layer is fairly generic and doesn't change between different platforms.

This layer's functionality and role are the same as in versions of NDK prior to v2.0.

1.2.2 Ethernet Mini-Driver

The Ethernet mini-driver layer is responsible for setting up parameters for EMAC and MDIO configuration
according to system needs. If available, it uses APIs and data structures exported by the underlying Chip
Support Library (CSL) layer. It is also responsible for setting up EMAC interrupts into the DSP using data
structures and APIs exposed by the NDK OSAL.

This layer acts as the sole memory manager in the Ethernet driver. That is, it handles all memory
allocations, initializations, and frees of packet buffers for use in the buffer descriptors (BDs) in the
Transmit (Tx) and Receive (Tx) paths. For memory management, it again uses the data structures and
APIs defined by the NDK OSAL.

For the most part, the mini-driver invokes CSL APIs for setup, Tx, and interrupt service operations. The
CSL layer, however, can also invoke the mini-driver layer. The CSL layer can invoke the mini-driver
registered callback functions (set up during EMAC_open) for updating statistics and reporting errors. On
receiving a packet, it can hand over the packet to be passed up the stack or for memory allocation/free
of buffers in BDs.

This layer is OS agnostic, since it uses the NDK OSAL for all memory and interrupt management
operations. However, this layer is device-dependent since the EMAC peripheral setup requires
knowledge of the capabilities of EMAC on this platform/device and will have to be customized for each
platform and for application needs. So, this layer needs to be ported and customized from one platform
to another.

1.2.3 Serial Mini-Driver

The serial mini-driver layer is responsible for setting up parameters for device configuration and
communication, the transmission and reception of data, as well as computing and validating any required
checksums. It should make use of any existing serial hardware APIs or define its own code for
communicating directly with the serial device, if no API is available. Additionally, any hardware interrupt
configuration should be done in this layer (if necessary).

This layer also acts as the sole memory manager in the serial driver. That is, it handles all memory
allocations, initializations, and frees of packet buffers for use in the buffer descriptors (BDs) in the
Transmit (Tx) and Receive (Tx) paths. For memory management, it uses the data structures and APIs
defined by the NDK Packet Buffer Manager (PBM) and Memory Allocation modules.
SPRUFP2A—March 2015 Architecture Overview 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Ethernet Driver Architecture www.ti.com
The mini-driver code can be defined to be OS agnostic by making use of the NDK OSAL, however it is
up to the author to decide whether this is appropriate or not.

Similarly, the device dependency of this layer is determined by the implementation used to communicate
with the serial hardware. If device-specific code is used to define this layer, then this layer would, of
course, need to be customized for compatibility between platforms. However, by using device
independent serial APIs (if available), this layer could be made to be device independent.

1.2.4 Generic EMAC/MDIO Chip Support Library

This layer enables the generic driver architecture by doing the following:

• EMAC APIs. It defines the data structures and interfaces (APIs) required to configure and use EMAC
for transmit and receive operations.

• MDIO and SGMII APIs. It exposes APIs for managing the PHY-related (physical layer) configuration
through the MDIO and SGMII (if the PHY is capable of gigabit speed) modules.

• BD logic. It implements the basic logic for CPPI Buffer Descriptor management (setup, enqueuing,
and dequeuing operations).

• ISR logic. It contains the central logic for interrupt service routines. However, it uses the mini-driver's
registered callback functions to report packet reception, statistics, errors, and obtaining or freeing a
buffer for filling up a BD.

This layer is largely generic and doesn't vary much from platform to platform unless the EMAC
capabilities change a whole lot. For example, the CSL for an EMAC peripheral connecting to a PHY
switch would be very different from an EMAC that connects to a single PHY port. This layer is easily
portable to different devices with similar capabilities.
8 Architecture Overview SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Flow Charts
1.3 Flow Charts

The flow charts in this section do not apply to the serial mini-driver.

The transmission path for Ethernet packets is shown in the following flow chart.

User Application

send/sendto socket API

NIMUSendPacket

NDK Stack Processing
(L4 – TCP/UDP/RAW and IP)

Allocate Packet, Copy Data Buf f er; Add
headers and if needed f ragment packets

Dev ice Driv er’s registered “send” callback
f unction

EmacSend (nimu_eth.c)

Is link up and Transmitter ready ?
(TxFree is 1?)

HwPktTxNext

Yes

No

Just return f or
now. When link

ready packet will
be dequeued by
driv er and sent

out

Any pending packet in Tx
Queue (PBMQ_tx)?

Yes

No

No pending packets.
Set TxFree to 1 and

return.

Enqueue in Tx Queue, PBMQ_tx;

Return

Dequeue packet f rom dev ice
PBMQ_tx. Get an empty

EMAC_pkt f rom TxQueue and
f ill in packet details.

EMAC_sendPacket
(Validate Emac_Pkt structure f ields:- f lags,

buf f er of f set, length)

HwTxInt / HwInt
(Tx Interrupt Serv ice Routine)

Tx Completed. EMAC raises TxCP interrupt

Emac_TxServ iceCheck

Is Host Interrupt?

Is Stat Pending Interrupt?

Is v alid TxCP interrupt
on this channel?

emacDequeueTx

FreePacket (pf cbFreePacket)

(Driv er registered callback
f unction to f ree packet buf f er

that was successf ully sent out)

emacEnqueueTx
(Enqueue packet in EMAC BDs and start

EMAC transmitter if not running by setting
the TxnHDP to the app. BD)

Any more pending
packets f or Tx

in waitQ?

Yes

No

No

Return

Return

No

No

Yes

StatisticsUpdate
(pf cbStatistics)

(Driv er registered Stats
update f unction

notif ied)

StatusUpdate
(pf cbStatus)

(Driv er registered
Status update f unction
notif ied to indicate error

/ status change)

Yes

Yes

Return
Return

Return
SPRUFP2A—March 2015 Architecture Overview 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Flow Charts www.ti.com
The receive path for Ethernet packets is as follows:

HwRxInt / HwInt (Rx Interrupt Serv ice Routine)

EMAC_RxServ iceCheck

RxPacket (pf cbRxPacket)

(Driv er registered Packet Receiv e Handler)

Enqueue in dev ice Rx Queue (PBMQ_rx)

Notif y Stack of pending Rx Ev ent

NIMUPacketServ ice

Dev ice Registered “pkt_serv ice” callback
f unction

Emac_PktServ ice

Any pending packet in Rx
Queue (PBMQ_rx)?

Dequeue Packet

NIMUReceiv ePacket

IPRxPacket / LLIRxPacket /pppoeInput /
IPv 6RxPacket

Ethernet Packet Receiv ed
by EMAC Hw. DSP

Interrupt Raised f or EMAC

Yes

Yes

Return;
Any more packets?

NDK Stack Processing  Socket
APIs

User Application

No

Return

Is Host Interrupt?

Is Stat Pending Interrupt?

Is v alid Rx interrupt on
this channel?

No

No

StatisticsUpdate
(pf cbStatistics)

(Driv er registered Stats
update f unction

notif ied)

Yes

Yes

StatusUpdate
(pf cbStatus)

(Driv er registered
Status update f unction
notif ied to indicate error

/ status change)

Yes

Return

Return

Return

emacDequeueRx
(Validate Packet f lags and buf f er len; Handov er

packet to driv er;)
(If v alid BD obtained f rom RxPacket return,
enqueue it and if need be start Receiv er by

setting RxnHDP)

Return a new
Emac_Pkt ty pe
packet buf f er

to replenish BD

Any Pending Ethernet
Ev ents?

NetScheduler

(wait f or any HWI (Eth / Serial) / Timer ev ents
using SEM)

No

Stack Rx Ev ent Set
(Post SEM to indicate Eth HWI)
10 Architecture Overview SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Background
1.4 Background

To port NDK Support Package device drivers, you should be familiar with the following constructs and
concepts.

1.4.1 Network Control (NETCTRL) Module

The Network Control Module (NETCTRL) is at the center of the NDK and controls the interface of the
HAL device drivers to the internal stack functions.

The NETCTRL module and its related APIs are described in both the Network Developer's Kit (NDK)
Software Programmer's Reference Guide (SPRU524) and the Network Developer's Kit (NDK) Software
User's Guide (SPRU523). To write device drivers, you must be familiar with NETCTRL. The description
given in the Network Developer's Kit (NDK) Software User's Guide (SPRU523) is more appropriate for
device driver work.

1.4.2 Stack Event (STKEVENT) Object

The STKEVENT object is a central component in the low-level architecture. It ties the HAL layer to the
scheduler thread in the network control module (NETCTRL). The network scheduler thread waits on
events from various device drivers in the system, including the Ethernet, serial, and timer drivers.

Device drivers use the STKEVENT object to inform the scheduler that an event has occurred. The
STKEVENT object and its related API are described in the Network Developer's Kit (NDK) Software
Programmer's Reference Guide (SPRU524). Device driver writers need to be familiar with STKEVENT.

1.4.3 Packet Buffer (PBM) Object

The PBM object is a packet buffer that is sourced and managed by the Packet Buffer Manager (PBM). It
provides packet buffers for all packet-based devices in the system. Therefore, the serial port and
Ethernet drivers both make use of this module.

The PBM module manages packet buffers up to 3 KB in size. Any packet buffer allocation larger than 3
KB is managed by the Jumbo Packet Buffer Manager (Jumbo PBM). A default Jumbo PBM
implementation is provided in the NDK; this implementation might need customization according to the
application needs and system's memory constraints.

The PBM object, its related API, and the Jumbo PBM API are described in the Network Developer's Kit
(NDK) Software Programmer's Reference Guide (SPRU524). The Network Developer's Kit (NDK)
Software User's Guide (SPRU523) also includes a section on adapting the PBM to a particular included
software.

1.4.4 NDK Interrupt Manager

The NDK Interrupt Manager is a module in the NDK OSAL that abstracts out the OS (SYS/BIOS) specific
APIs and data structures required for interrupt configuration and management. It exposes a simple
interface to the driver writer to configure EMAC interrupts into the DSP core. Interrupt Setup (IntSetup)
Object is a data structure defined by this module.

Depending on the system specification, there can be a single or multiple system event/interrupt numbers
defined for the EMAC module's Transmit (Tx) and Receive (Rx) events. Also based on the system
specification, one could register a single Interrupt Service Routine (ISR) for both Tx and Rx events or
register separate ISRs for each event.
SPRUFP2A—March 2015 Architecture Overview 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Background www.ti.com
The following NDK Interrupt Manager APIs can be used by the Ethernet driver in setting up the interrupts:

• Interrupt_add

• Interrupt_delete

• Interrupt_enable

• Interrupt_disable

Please see the sample Ethernet driver code packaged as the NDK Support Package (NSP) for any
C64x+ device for an illustration of interrupt configuration using NDK Interrupt Manager APIs. The NDK
Interrupt Manager, along with its related API and data structures, are described in the Network
Developer's Kit (NDK) Software Programmer's Reference Guide (SPRU524).

1.4.5 Data Alignment

The NDK libraries have been built with the assumption that the IP header in a data packet is 16-bit
aligned. In other words, the first byte of the IP packet (the version/length field) must start on an even 16-
bit boundary. In any fixed-length header protocol, this requirement can be met by backing off any odd
byte header size, and adding it to the header padding specified to the stack. For Ethernet and peer-to-
peer protocol (PPP), the only requirement is that the Ethernet or PPP packet not start on an odd byte
boundary.

In addition, some drivers in the NDK are set up to have a 22-byte header. This is the header size of a
PPPoE packet when sent using a 14-byte Ethernet header. When all arriving packets use the 22-byte
header, it guarantees that they can be routed to any egress device with a header requirement up to that
size. For Ethernet operation, this requires that a packet has 8 bytes of pre-pad to make its total header
size 22 bytes.

The value of this pre-pad is #defined as PKT_PREPAD in the Ethernet driver include files.
12 Architecture Overview SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com API Overview
1.5 API Overview

The various APIs exposed by the three main layers—the NIMU-specific layer, mini-driver, and generic
EMAC/MDIO CSL layer—can be classified based on their functionality into the following categories:

• Initialization and Shutdown APIs. These APIs are called during Ethernet device start up to initialize
the EMAC environment or during shutdown to bring down the Ethernet controller and its subsystems.

• Configuration APIs. These APIs are called to get/set the EMAC configuration. The configuration
APIs are generally useful in setting the following parameters:

— multicast configuration

— receive filters on the Ethernet device

• Transmit APIs. These APIs provide a well-defined interface for the NDK stack to pass down any
available Ethernet packets onto the wire using the Ethernet driver.

• Receive APIs. These APIs provide a well-defined interface for the driver to pass up an Ethernet
packet to the NDK stack and into an application.

• Polling APIs. These APIs provide an interface for the NDK core stack to monitor the status of the
Ethernet link on a periodic basis and to perform any necessary configuration of the EMAC depending
on a change of state, if any.

The following table groups the APIs defined by each of the Ethernet driver layers under one of these five
categories.

The following chapters discuss each of the layers and APIs in detail.

Table 1-2. API Mapping between the Ethernet driver layers

API Category NIMU Layer Mini-Driver Layer CSL Layer

Initialization EmacInit HwPktInit --none--

EmacStart HwPktOpen EMAC_open /
MDIO_open

Shutdown EmacStop HwPktClose, HwPktShutdown EMAC_close /
MDIO_close

Configuration Emacioctl HwPktSetRx EMAC_setReceiveFilter,
EMAC_getReceiveFilter,
EMAC_setMulticast,
EMAC_getStatus,
EMAC_getStatistics,
EMAC_enumerate

Transmit EmacSend HwPktTxNext EMAC_sendPacket,
EMAC_TxServiceCheck
(Tx ISR)

Receive EmacPktService HwInt / HwRxInt
(depends on whether the EMAC has
separate system events mapped into
DSP for Rx/Tx or just one for both)

EMAC_RxServiceCheck
(Rx ISR)

Polling EmacPoll _HwPktPoll EMAC_TimerTick,
MDIO_timerTick,
MDIO_getStatus
SPRUFP2A—March 2015 Architecture Overview 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Chapter 2

NIMU Layer

This chapter describes Network Interface Management Unit (NIMU) layer API.

2.1 Overview of the NIMU Layer

The Network Interface Management Unit (NIMU) layer interfaces with the NDK core stack. It enables the
stack to control the device at runtime. This layer is platform-independent and is easily portable across
various platforms.

2.2 NIMU APIs

Driver writers need to implement APIs as follows to make their driver NIMU-compliant:

1. Register a driver Init callback function with the core NDK NIMU layer by populating the function in the
NIMUDeviceTable.

2. Allocate and initialize the NETIF_DEVICE structure for this device with the appropriate parameters
and callback functions defined for the following NIMU-defined APIs:

— start

— stop

— poll

— send

— pkt_service

— ioctl

— add_header

3. Invoke the NIMURegister API to register this device with the NDK core's NIMU layer for further
management.

Topic Page

2.1 Overview of the NIMU Layer . 14

2.2 NIMU APIs . 14
SPRUFP2A—March 2015 NIMU Layer 14
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

www.ti.com NIMU APIs
4. Finally, implement all the callback functions as per the NIMU architecture guidelines and the API
descriptions described in "Network Interface Management Unit" section of the Network Developer's
Kit (NDK) Software Programmer's Reference Guide (SPRU524).

Please see the nimu_eth.c file in the sample Ethernet driver code packaged as NDK Support Package
(NSP) for any C64x+ device for an example NIMU API implementation.
SPRUFP2A—March 2015 NIMU Layer 15
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Chapter 3

Ethernet Mini-Driver Layer

This chapter describes Ethernet mini-driver layer interface.

3.1 Overview

The Ethernet mini-driver layer in the new driver architecture is responsible for setting up the EMAC
subsystem configuration. It exposes various APIs to the NIMU layer through which the NDK stack can
configure, control, transmit, and receive packets using the Ethernet controller. It sets up configuration for
the EMAC, MDIO, and SGMII (if the physical layer is capable of gigabit speed) modules and acts like glue
between the NIMU-specific layer and the low level EMAC configuration layer—that is, the Chip Support
Library (CSL) layer—for those modules.

This layer is platform-dependent. Driver writers will need to know the PHY and EMAC capabilities and
interrupt definitions for the specific system and will need to configure the Ethernet module accordingly.

Topic Page

3.1 Overview . 16

3.2 Data Structures. 17

3.3 Ethernet Mini-Driver APIs . 18

3.4 Configuration Variables . 21
SPRUFP2A—March 2015 Ethernet Mini-Driver Layer 16
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

www.ti.com Data Structures
3.2 Data Structures

Device configuration information is stored in a private device instance structure called "PDINFO" that is
used to communicate the device configuration between the NIMU and the mini-driver layers.

typedef struct _pdinfo

{

 uint PhysIdx; /* physical index of device */

 HANDLE hEther; /* handle to logical driver */

 STKEVENT_Handle hEvent; /* semaphore handle */

 UINT8 bMacAddr[6]; /* MAC address */

 uint Filter; /* current RX filter */

 uint MCastCnt; /* current MCast addr count */

 UINT8 bMCast[6*PKT_MAX_MCAST]; /* multicast list */

 uint TxFree; /* transmitter "free" flag */

 PBMQ PBMQ_tx; /* Tx queue */

#ifdef _INCLUDE_NIMU_CODE

 PBMQ PBMQ_rx; /* Rx queue */

#endif

} PDINFO;

The following list describes the structure items in more detail:

• PhysIdx. Physical Index of this device (>=0). The PhysIdx may range from 0 to n-1. Care should be
to taken to ensure that the physical index of a device is unique if multiple instances of devices exist
in the system. This attribute is an auxiliary field that can be used by the NIMU and mini-driver to
communicate any data at run-time. For example, the physical index can be used to hold the EMAC
channel number on which packets using this device should be transmitted, and the mini-driver can
be changed to use this info when transmitting the packet.

• hEther. This field is no longer being used after the switch to NIMU style drivers in NDK 2.0.

• hEvent. The handle to the semaphore object shared by the NDK stack and the driver to
communicate pending network Rx events. This handle is used with the STKEVENT_signal() function
to signal the NDK stack that a packet has been received and enqueued by the driver for hand off to
the NDK Ethernet stack.

• bMacAddr. The Mac (Hardware) address of this interface. This is set to a default value by the NIMU
layer. The default value can be overridden by the mini-driver with a value received from the EEPROM
during device open.

• Filter. The current receive filter setting, which indicates which types of packets are accepted. The
receive filter determines how the packet device should filter incoming packets. This field is set by the
NIMU layer/stack and used by the mini-driver to program the EMAC. Legal values include:

— ETH_PKTFLT_NOTHING. no packets

— ETH_PKTFLT_DIRECT. only directed Ethernet

— ETH_PKTFLT_BROADCAST. directed plus Ethernet broadcast

— ETH_PKTFLT_MULTICAST. directed, broadcast, and selected Ethernet multicast

— ETH_PKTFLT_ALLMULTICAST. directed, broadcast, and all multicast

— ETH_PKTFLT_ALL. All packets
SPRUFP2A—March 2015 Ethernet Mini-Driver Layer 17
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Ethernet Mini-Driver APIs www.ti.com
• MCastCnt. Number of multicast addresses installed.

• bMCast. Multicast address list. This field is a byte array of consecutive 6-byte multicast MAC
addresses. The number of valid addresses is stored in the MCastCnt field. The multicast address list
determines what multicast addresses (if any) the MAC is allowed to receive. The multicast list is
configured by the application.

• TxFree. Transmitter free flag. The TxFree flag is used by NIMU layer to determine if a new packet
can be sent immediately by the mini-driver, or if it should be placed on the transmit pending queue
for later. If the flag is not zero, the mini-driver function HwPktTxNext() is called when a new packet is
queued for transmission. This flag is maintained by the mini-driver.

• PBMQ_tx. Transmit pending queue. The transmit pending queue holds all the packets waiting to be
sent on the Ethernet device. The mini-driver pulls PBM packet buffers off this queue in its
HwPktTxNext() function and posts them to the Ethernet MAC for transmit. Once the packet has been
transmitted, the packet buffer is freed by the mini-driver calling PBM_free(). There is one Tx queue
for each PKT device.

• PBMQ_rx. Receive queue. All packets received by the EMAC and handed over to the mini-driver are
enqueued to the Rx queue. The mini-driver also signals the NDK stack of the pending receive packet
that needs to be serviced in this queue. When the NDK scheduler thread next runs and finds this
pending event to service, it invokes the NIMU layer EmacPktService function, which dequeues any
pending packets on this queue and hands it over to the stack for further processing. There is one Rx
queue for each PKT device.

3.3 Ethernet Mini-Driver APIs

The following APIs are exported by the Ethernet mini-driver layer:

• HwPktInit

• HwPktOpen

• HwPktClose

• HwPktShutdown

• HwPktSetRx

• HwPktTxNext

• _HwPktPoll

As described in Section 1.5, the APIs exposed by this layer can be conveniently grouped according to
their functionality into the following categories:

1. Initialization. HwPktInit, HwPktOpen

2. Shutdown. HwPktClose, HwPktShutdown

3. Configuration. HwPktSetRx

4. Transmit. HwPktTxNext

5. Receive. HwInt, HwRxInt

6. Polling. _HwPktPoll
18 Ethernet Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Ethernet Mini-Driver APIs
3.3.1 HwPktInit — Initialize Packet Driver Environment

Syntax

uint HwPktInit();

Parameters

None

Return Value

The number of Ethernet devices initialized. 0 indicates an error. All other positive values are considered
success.

Description

This function is called to initialize the mini-driver environment and enumerate the number of devices in
the system. A device instance may be opened for each device represented in the return count. If the
function returns zero, no devices are supported.

3.3.2 HwPktOpen — Open Ethernet Device Instance

Syntax

uint HwPktOpen (PDINFO *pi);

Parameters

pi - Pointer to Ethernet device instance structure.

Return Value

Returns 0 on success and a positive value to indicate an error.

Description

This function is called to open a packet device instance. When HwPktOpen is called, the PDINFO
structure is assumed to be valid. This function sets up the EMAC configuration and invokes the CSL
layer's EMAC_open function to configure the EMAC peripheral. As part of the configuration passed to
EMAC_open, the driver sets up the required callback functions that the CSL layer in turn invokes to
allocate/free packet buffers, update statistics or status, and to hand over received packets.

This function is also responsible for setting up the interrupts and any other PHY related configuration to
ready it for Tx/Rx operations.

3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts

Syntax

void HwPktClose (PDINFO *pi);

Parameters

pi - Pointer to Ethernet device instance structure.
SPRUFP2A—March 2015 Ethernet Mini-Driver Layer 19
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Ethernet Mini-Driver APIs www.ti.com
Return Value

None.

Description

This function is called to close a packet device instance. When called, this function invokes the CSL layer
EMAC_close function to disable EMAC Tx/Rx operations and free up any enqueued packets. This
function also disables the EMAC interrupts.

3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings

Syntax

void HwPktSetRx(PDINFO *pi);

Parameters

pi - Pointer to Ethernet device instance structure.

Return Value

None

Description

This function is called when the values contained in the PDINFO instance structure for the Rx filter or
multicast list are altered. The mini-driver calculates hash values based on the new settings if multicast
lists are maintained through hash tables on this platform, and updates the EMAC settings by calling the
CSL layer's EMAC_setReceiveFilter API.

3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands

Syntax

uint HwPktIoctl(PDINFO *pi, uint cmd, void *arg);

Parameters

pi - Pointer to Ethernet packet device instance structure.

cmd - Device-specific command.

arg - Pointer to command specific argument.

Return Value

Returns 1 on success and 0 on error.

Description

This function is called to execute a driver-specific IOCTL command. Not all Ethernet drivers support this
API.
20 Ethernet Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Configuration Variables
3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue

Syntax

void HwPktTxNext(PDINFO *pi);

Parameters

pi - Pointer to Ethernet packet device instance structure.

Return Value

None

Description

This function is called to indicate that a packet buffer has been queued in the transmit pending queue
contained in the device instance structure and the NIMU layer believes the transmitter to be free. This
function dequeues any pending packets in the transmit queue of this device, allocates a EMAC_Pkt
structure (a data structure understood by the CSL layer) and fills in the packet details and invokes the
CSL layer function EMAC_sendPacket to finally transmit the packet.

3.3.7 _HwPktPoll — Mini-Driver Polling Function

Syntax

void _HwPktPoll(PDINFO *pi, uint fTimerTick);

Parameters

pi - Pointer to Ethernet packet device instance structure.

fTimerTick - Flag indicating whether this function has been called because the 100 ms timer expired or
if it was called by some other function randomly.

Return Value

None

Description

This function is called by the NIMU layer at least every 100 ms, but calls can come faster when there is
network activity. The mini-driver is not required to perform any operation in this function, but it can be
used to check for device lockup conditions. When the call is made due to the 100 ms time tick, the
fTimerTick calling parameter is set.

Note that this function is not called in kernel mode (hence, the underscore in the name). This is the only
mini-driver function called from outside kernel mode (to support polling drivers).

3.4 Configuration Variables

The following configuration variables are defined by the Ethernet mini-driver layer to control various
features:

• EXTERNAL_MEMORY. Enable this flag to compile the code to support the cache cleaning and
synchronization required when the packet buffer memory is allocated from external memory.
SPRUFP2A—March 2015 Ethernet Mini-Driver Layer 21
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Configuration Variables www.ti.com
• EXTMEM. Define this bit mask to indicate the external memory address location for this platform.

• PKT_MAX. Use this constant to control the number of "EMAC_Pkt" type packet buffers that are
allocated and initialized on Receive and Transmit paths respectively at this layer to optimize the data
paths. During EMAC start up, in the HwPktOpen() function, buffers of type "EMAC_Pkt" structure are
allocated and enqueued to a free queue/receive queue. Packets from this "RxQueue" are used to
replenish the CSL layer with buffers for its BDs. Similarly, for the Tx path a queue of such EMAC_Pkt
initialized structures are held. A packet buffer from the "TxQueue" is dequeued and used in filling up
the NDK packet buffer details before being handed over to the CSL layer. This constant controls the
number of such replenishing buffers at this layer.

This constant can be fine-tuned during performance tuning to suit the application’s needs. For
example, increasing this constant helps in cases where the NDK stack or application is transmitting
packets at a faster rate than the EMAC hardware. In this case, the packets are buffered up here at
the mini-driver and get transmitted at the next suitable opportunity. But, it's important to note that this
constant needs to be tuned according to the memory available in the system. The smallest number
this can be set to is 8.

• PKT_PREPAD. The number of bytes to reserve before the Ethernet header for any additional
headers like PPP. This is typically defined to be 8 to include the PPP header.

• RAM_MCAST. Define this configuration variable as 1 if the EMAC on this device supports RAM-
based multicast lists. That is, if the EMAC is capable of storing multicast addresses in RAM and has
defined appropriate registers to store them.

• HASH_MCAST. Enable this or define this as 1 if the EMAC on this device is capable of maintaining
the multicast address list using hash tables.

• PKT_MAX_MCAST. This constant defines the maximum number of multicast addresses that can be
configured and supported by the EMAC peripheral on this device. This is typically set to 31.
22 Ethernet Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Chapter 4

Serial Mini-Driver Layer

This chapter describes serial mini-driver layer interface.

4.1 Overview

The serial port driver is divided into two distinct parts, a hardware-independent module (llserial.c) that
implements the llSerial API (where "ll" is lowercase Ls for "low-level"), and a hardware-specific module
that interfaces to the hardware independent module. The llSerial API is described in the TCP/IP NDK
Programmer's Reference Guide, Appendix D. This section describes this small hardware-specific
module, or "mini-driver".

Note that this module is purely optional. A valid serial port driver can be developed by directly
implementing the llSerial API described in the Programmer's Reference Guide. Even if the mini-driver is
used, the driver writer has the option of changing any of the internal data structures so long as the llSerial
interface remains unchanged.

Topic Page

4.1 Overview . 23

4.2 Global Instance Structure . 24

4.3 Serial Mini-Driver Operation . 29

4.4 Serial Mini-Driver API . 30
SPRUFP2A—March 2015 Serial Mini-Driver Layer 23
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

Global Instance Structure www.ti.com
4.2 Global Instance Structure

Nearly all the functions in the mini-driver API take a pointer to a serial driver instance structure called
SDINFO. This structure is defined in llserial.h:

/*

 * Serial device information

 */

typedef struct _sdinfo {

 uint PhysIdx; /* Physical index of device (0 to n-1) */

 uint Open; /* Open counter used by llSerial */

 HANDLE hHDLC; /* Handle to HDLC driver (NULL=closed) */

 STKEVENT_Handle hEvent; /* Handle to scheduler event object */

 UINT32 PeerMap; /* 32 bit char escape map (for HDLC) */

 uint Ticks; /* Track timer ticks */

 uint Baud; /* Baud rate */

 uint Mode; /* Data bits, stop bits, parity */

 uint FlowCtrl; /* Flow Control Mode */

 uint TxFree; /* Transmitter "free" flag */

 PBMQ PBMQ_tx; /* Tx queue (one for each SER device) */

 PBMQ PBMQ_rx; /* Rx queue (one for each SER device) */

 PBM_Handle hRxPend; /* Packet being rx'd */

 UINT8 *pRxBuf; /* Pointer to write next char */

 uint RxCount; /* Number of bytes received */

 UINT16 RxCRC; /* Receive CRC */

 UINT8 RxFlag; /* Flag to "un-escape" character */

 PBM_Handle hTxPend; /* Packet being tx'd */

 UINT8 *pTxBuf; /* Pointer to next char to send */

 uint TxCount; /* Number of bytes left to send */

 UINT16 TxCRC; /* Transmit CRC */

 UINT8 TxFlag; /* Flag to insert character */

 UINT8 TxChar; /* Insert character */

 void (*cbRx)(char); /* Charmode callback (when open) */

 void (*cbTimer)(HANDLE h); /* HDLC Timer callback (when open) */

 void (*cbInput)(PBM_Handle hPkt); /* HDLC Input callback (when open) */

 uint CharReadIdx; /* Charmode read index */

 uint CharWriteIdx; /* Charmode write index */

 uint CharCount; /* Number of charmode bytes waiting */

 UINT8 CharBuf[CHAR_MAX]; /* Character mode recv data buffer */

} SDINFO;

4.2.1 PhysIdx: Physical index of this device (0 to n-1)

The physical index of the device is how the device instance is represented to the outside world. The mini-
driver need not be concerned about the physical index.

4.2.2 Open: Open flag

This flag is used by llserial.c to track whether the mini-driver has been opened. It should not be
modified by the mini-driver code.
24 Serial Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Global Instance Structure
4.2.3 hHDLC: Handle to HDLC driver

The handle to the HDLC device is how the system tracks where HDLC data should be sent. When this
field is NULL, the driver is not open for HDLC mode, and all data should be treated as character mode.
When the field is not NULL, any incoming serial data should be treated as potential HDLC data, and any
output packet is treated as an egress HDCL frame. HDLC packets received in HDLC mode are tagged
with this handle so that the upper layers can identify the packet's source.

4.2.4 hEvent: Handle to scheduler event object

The handle hEvent is used with the STKEVENT function STKEVENT_signal() to signal the system
whenever new data is received. In character mode, this event is fired for each character. In HDLC mode,
the event is fired when a good HDLC packet is received.

4.2.5 PeerMap: 32 bit char escape map (for HDLC)

The peer map is a 32 bit bitmap coded as (1<<char) where char is an ASCII character 0 through 31.
When the bit is set, an outgoing HDLC frame must have the corresponding character escaped in a HDLC
frame transmission.

4.2.6 Ticks: Track timer ticks

The field is used to convert 100ms timer ticks to 1 second timer ticks. It is not used by mini-drivers.

4.2.7 Baud: Serial Device Baud Rate

The field holds the current physical baud rate of the serial port in bps (e.g.: 9600, 19200, 153600, etc).

4.2.8 Mode: Device Mode

The mode field holds the mode of the serial port in terms of data bits, stop bits, and parity. These values
appear in hal.h. Currently defined values are as follows:

#define HAL_SERIAL_MODE_8N1 0

#define HAL_SERIAL_MODE_7E1 1

4.2.9 FlowCtrl: Flow Control Mode

The FlowCtrl field determines the flow control mode. These values appear in hal.h. Currently defined
values are as follows:

#define HAL_SERIAL_FLOWCTRL_NONE 0

#define HAL_SERIAL_FLOWCTRL_HARDWARE 1

4.2.10 TxFree: Transmitter Free Flag

The TxFree flag is used by llserial.c to determine if new data should be sent immediately by the mini-
driver, or placed on the transmit pending queue for later. If the flag is not zero, the mini-driver function
HwSerTxNext() is called when any new data is queued for transmission. This flag is maintained by the
mini-driver.
SPRUFP2A—March 2015 Serial Mini-Driver Layer 25
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Global Instance Structure www.ti.com
4.2.11 PBMQ_tx: Tx queue

The PBMQ_tx queue is a queue of packets waiting to be transmitted. When the transmitter is free and
the HwSerTxNext() function is called, the mini-driver removes the next packet off this queue and starts
transmission.

The PBMQ object is a queue of PBM packet buffers and it is operated on by the PBMQ functions defined
in the TCP/IP NDK Programmer's Reference Guide.

4.2.12 PBMQ_rx: Rx queue

The PBMQ_rx queue is a queue of packets that have been received on the interface. When a new packet
is received, the mini-driver enqueues it onto this queue, and fires a serial event to the STKEVENT handle.

The PBMQ object is a queue of PBM packet buffers and it is operated on by the PBMQ functions defined
in the TCP/IP NDK Programmer's Reference Guide.

4.2.13 hRxPend: PBM_Handle to packet being received

When in HDLC mode, this value holds a handle to the packet that is currently being received by the mini-
driver. When the packet is complete, the mini-driver places this packet in the PBMQ_rx queue, and
allocates another free packet by calling PBM_alloc().

4.2.14 pRxBuf: Pointer to next character in packet to receive

When in HDLC mode, this is a pointer where to write the next character of received data. The pointer
points somewhere in the current packet buffer who's handle is stored in hRxPend.

4.2.15 RxCount: Number of bytes written to RX packet buffer so far

When in HDLC mode, this value is the number of characters that have been written to the current packet
being received.

4.2.16 RxCRC: RX CRC running total

When in HDLC mode, this value is a running total of the current CRC value of the packet being received.

It is used as a temporary CRC holding value while packet data is still being received. It is then compared
to the CRC contained in the packet to validate the incoming CRC.

4.2.17 RxFlag: Flag indicating that next byte is the second half of an escape sequence

When in HDLC mode, this flag is set when an escape character is seen. It prompts the RX state machine
in the mini-driver to "un-escape" the next character received.

4.2.18 hTxPend: PBM_Handle to packet being transmitted

This value holds a handle to the packet that is currently being transmitted by mini-driver. When the packet
is completely transmitted, the mini-driver frees this packet by calling PBM_free().
26 Serial Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Global Instance Structure
4.2.19 pTxBuf: Pointer to next character in packet to transmit

This is a pointer where to read the next character of transmit data. The pointer points somewhere in the
current packet buffer who's handle is stored in hTxPend.

4.2.20 TxCount: Number of bytes yet to send from to TX packet

This value is the number of characters that have yet to be read and transmitted from the current packet
being sent.

4.2.21 TxCRC: RX CRC running total

When in HDLC mode, this value is a running total of the current CRC value of the packet being
transmitted. It is used as a temporary CRC holding value while packet data is still being sent. It is used
to patch in the correct CRC value as the last two bytes of the packet data.

4.2.22 TxFlag: Flag indicating that next byte is the second half of an escape sequence

When in HDLC mode, this flag is set when an escape character has to be generated. It prompts the TX
state machine in the mini-driver to write the second half of the escape sequence next. This value is stored
in TxChar.

4.2.23 cbRx: Pointer to character mode callback function

This character mode callback function is called by llserial.c whenever there is character mode data
queued up by the serial driver. This is not used by the mini-driver.

4.2.24 cbTimer: Pointer to HDLC timer callback function

The serial driver (llserial.c) calls this function once every second. The callback function is not used
by the mini-driver.

4.2.25 cbInput: Pointer to HDLC input callback function

The serial driver (llserial.c) calls this function with new HDLC packets. The callback function is not
used by the mini-driver.

4.2.26 TxChar: Second half of escape sequence

When in HDLC mode and TxFlag is set, this variable holds the next value to send out the serial port

4.2.27 CharReadIdx: Character buffer read index

This index is used by llserial.c to read character data out of the circular character buffer. It is not used
by a mini-driver.
SPRUFP2A—March 2015 Serial Mini-Driver Layer 27
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Global Instance Structure www.ti.com
4.2.28 CharWriteIdx: Character buffer write index

This index is used by a mini-driver in character mode to write newly received character data to circular
character buffer array contained in this structure. As data is written, this index is increased and the
CharBufUsed value is increased. Once it reaches the value CHAR_MAX, it is reset to zero.

4.2.29 CharCount: Characters stored in character buffer

Data received in "character mode" are not placed in an serial frame buffer, but are stored in a circular
buffer contained in this instance structure. The maximum number of characters that can be stored is
determined by CHAR_MAX. The number of characters currently stored is determined by this value. The
value is increased as characters are written to the buffer. The llserial.c module will decrement this
value as characters are read out, so it should only be altered in a critical section.

4.2.30 CharBuf: Character mode input data buffer

This array acts as the input buffer for "character mode" data. Unlike HDLC data, individual characters are
not built into serial packet buffers. Instead, they are queued for immediate consumption by the character
mode user - most likely an AT command set modem state machine, but it could also be a serial console
program. The size of this buffer is set by CHAR_MAX.
28 Serial Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Serial Mini-Driver Operation
4.3 Serial Mini-Driver Operation

Only some of these fields are used in a mini-driver. The structure entries as defined as follows:

The serial mini-driver is charged with maintaining the serial device hardware, and servicing any required
communications interrupts. It is built around a simple open/close concept. When open, the driver is
active, and when closed is it not. In general, it must implement the mini-driver API described in the
following section. Here are some additional notes on its internal operation.

4.3.1 Receive Operation

The mini-driver receives serial data and must classify it as HDLC data or character mode data. It is
sufficient to use the current "mode" of the driver to determine how to classify data. For example:

// If HDLC handle valid, driver is open on HDLC mode

// Else use charmode

if(MyInstancePtr->hHDLC)

 Treat_Data_as_HDLC();

else

 Treat_Data_as_CharacterMode();

Of course, more advanced classification heuristics can be attempted (auto recognition of HDLC frames).
Once the data is classified, it is placed either in a PBM packet buffer (if HDLC), or the circular character
buffer (if character mode data). Empty packet buffers are acquired by calling the PBM_alloc() function.

The character mode buffer array for non-HDLC data is located in the mini-driver device instance, using
the structure fields: CharBuf, CharCount, and CharWriteIdx. When CharCount equals CHAR_MAX, and
no more data can be written to the buffer, any new data is discarded.

When the driver is in HDLC mode, the driver receives serial data as HDLC packets, and creates a PBM
packet buffer object to hold each HDLC frame. Note that the HDLC flag character (0x7E) is always
removed from the HDLC packets. The completed HDLC packet written to the PBM packet buffer has
following format.

Table 4-1. HDLC Packet Format

When a HDLC packet is ready, the mini-driver adds it to the PQMQ_rx queue and signals an event to the
STKEVENT object.

On receive, the mini-driver must remove all HDLC escape sequences, and validate the HDLC CRC.
Packets with an invalid CRC are discarded. CRC calculation for both receive and transmit is done "in-
line" as the packet is being received. Also, the CRC code in the example driver is based on a 4 bit
algorithm. This allows for the use of a 16 entry lookup table instead of a 256 entry table.

Addr (FF) Control (03) Protocol Payload CRC

1 1 2 1500 2
SPRUFP2A—March 2015 Serial Mini-Driver Layer 29
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Serial Mini-Driver API www.ti.com
4.3.2 Transmit Operation

Unlike receive, transmit uses PBM packet buffers to send regardless whether its in character mode or
HDLC mode. The only difference in that in HDLC mode, the data must be formatted. The mini-driver gets
the next packet to send off the PBMQ_tx queue when its HwSerTxNext() function is called. When all the
characters from the packet have been read and transmitted, the PBM packet buffer is freed by calling
PBM_free().

On transmit, the mini-driver must use escape sequences when necessary, and compute the HDLC CRC.
Note on transmitted packet, the 2 byte HDCL CRC is present, just not valid. The mini-driver must validate
the CRC when it sends the packet. CRC calculation for both receive and transmit is done "in-line" as the
packet is being received. Also, the CRC code in the example driver is based on a 4 bit algorithm. This
allows for the use of a 16 entry lookup table instead of a 256 entry table.

4.4 Serial Mini-Driver API

The following API functions must be provided by a mini-driver.

4.4.1 HwSerInit - Initialize Serial Port Environment

Syntax:

uint HwSerInit();

Parameters:

None

Description:

Called to initialize the serial port mini-driver environment, and enumerate the number of devices in the
system. A device instance may be opened for each device represented in the return count. If the function
returns zero, no serial devices are supported.

Returns:

The number of serial devices in the system.

4.4.2 HwSerShutdown - Shutdown Serial Port Environment

Syntax:

void HwSerShutdown();

Parameters:

None

Description:

Called to indicate that the serial port environment should be completely shutdown.

Returns:

Nothing.
30 Serial Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Serial Mini-Driver API
4.4.3 HwSerOpen - Open Serial Port Device Instance

Syntax:

uint HwSerOpen(SDINFO *pi);

Parameters:

pi -- Pointer to serial device instance structure

Description:

Called to open a serial device instance. When called, SDINFO structure is valid.

Returns:

Returns 1 if the driver was opened, or 0 on error.

4.4.4 HwSerClose - Close Serial Port Device Instance

Syntax:

void HwSerClose(SDINFO *pi);

Parameters:

pi -- Pointer to serial device instance structure

Description:

Called to close a serial device instance. When called, any PBM packet buffers held by the driver instance
including hRxPend, hTxPend, and PBMQ_tx. Packets from all three are freed by calling PBM_free(). In
addition, the character mode buffer is reset (read pointer, write pointer, and character count all set to
NULL). Packets that have been placed on the PBMQ_rx queue are flushed by llserial.c.

Returns:

Nothing.

4.4.5 HwSerTxNext - Transmit next buffer in transmit queue

Syntax:

void HwSerTxNext(SDINFO *pi);

Parameters:

pi -- Pointer to serial device instance structure

Description:

Called to indicate that a PBM packet buffer has been queue in the transmit pending queue (PBMQ_tx)
contained in the device instance structure, and llserial.c believes the transmitter to be free (TxFree
set to 1). The mini-driver uses this function to start the transmission sequence.

Returns:

Nothing.
SPRUFP2A—March 2015 Serial Mini-Driver Layer 31
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Serial Mini-Driver API www.ti.com
4.4.6 HwSerSetConfig - Set Serial Port Configuration

Syntax:

void HwSerSetConfig(SDINFO *pi);

Parameters:

pi -- Pointer to serial device instance structure

Description:

Called when the values contained in the SDINFO instance structure are altered. The structure fields used
for configuration are Baud, Mode, and FlowCtrl. The mini-driver should update the serial port
configuration with the current SDINFO settings.

Returns:

Nothing.

4.4.7 HwSerPoll - Serial Polling Function

Syntax:

void _HwSerPoll(SDINFO *pi, uint fTimerTick);

Parameters:

pi -- Pointer to serial device instance structure fTimerTick Flag indicating the 100ms have elapsed.

Description:

Called by llserial.c at least every 100ms, but calls can come faster when there is serial activity. The
mini-driver is not required to perform any operation in this function, but it can be used to check for device
lockup conditions. When the call is made due to the 100ms time tick, the fTimerTick calling parameter is
set.

Note that this function is not called in kernel mode (hence the underscore in the name). This is the only
mini-driver function called from outside kernel mode (done to support polling drivers).

Returns:

Nothing.
32 Serial Mini-Driver Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Chapter 5

Generic EMAC/MDIO CSL Layer

This chapter describes the EMAC/MDIO CSL layer interface.

5.1 Overview

The EMAC/MDIO CSL layer defines data structures and APIs that enable the driver to configure the
EMAC hardware and send and receive packets.

This CSL layer is fairly generic and can be ported easily across different platforms so long as the EMAC
hardware specification don't vary a lot. For example, the CSL for an EMAC with switch capabilities would
be very different from the CSL for an EMAC with support for a single PHY. This layer abstracts out all the
EMAC/MDIO register layer configuration details from the higher layers and makes them easier to write
and understand.

5.2 CSL Data Structures

The CSL layer exports various data structures to enable configuration of EMAC, MDIO, and other
Ethernet associated modules. Discussing all the data structures is beyond the scope of this document.
The definitions can be viewed from the code or by obtaining a doxygen output of the code.

5.3 EMAC APIs

The following APIs are exported by the CSL EMAC layer:

• EMAC_enumerate

• EMAC_open

• EMAC_close

• EMAC_setReceiveFilter

Topic Page

5.1 Overview . 33

5.2 CSL Data Structures. 33

5.3 EMAC APIs . 33

5.4 Callback Functions. 34
SPRUFP2A—March 2015 Generic EMAC/MDIO CSL Layer 33
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

Callback Functions www.ti.com
• EMAC_getReceiveFilter

• EMAC_setMulticast

• EMAC_getStatus

• EMAC_getStatistics

• EMAC_sendPacket

• EMAC_RxServiceCheck

• EMAC_TxServiceCheck

• EMAC_TimerTick

As described in Section 1.5, the APIs exposed by this layer can be conveniently grouped according to
their functionality into the following categories:

1. Initialization. EMAC_open

2. Shutdown. EMAC_close

3. Configuration. EMAC_setReceiveFilter, EMAC_getReceiveFilter, EMAC_setMulticast,
EMAC_getStatus, EMAC_getStatistics, EMAC_enumerate

4. Transmit. EMAC_sendPacket, EMAC_TxServiceCheck (Tx ISR)

5. Receive. EMAC_RxServiceCheck (Rx ISR)

6. Polling. EMAC_TimerTick

The Ethernet mini-driver layer can invoke CSL APIs to perform any configuration or interrupt related
processing only after opening and setting up the EMAC peripheral successfully using the "EMAC_open"
API. All the error codes, macros, and constants used are defined in the header files included with the
source code and can be found in the "inc" directory.

5.4 Callback Functions

The CSL layer doesn't perform any OS specific operations such as memory allocation, free, initialization,
copy etc. Instead, this layer defines the required callback functions in the "EMAC_Config" data structure
and mandates that the driver implement these functions and register them with the driver during the
"EMAC_open" call. The callback functions that need to be implemented by the driver and their description
are describe in the subsections that follow.

See the Ethernet driver code for sample implementations of these functions.

5.4.1 pfcbGetPacket

This function is called by the CSL layer when it needs an empty packet buffer to replenish a receive
EMAC Buffer Descriptor (BD) in the EMAC RAM. This function needs to implement logic to allocate an
EMAC packet (of type "EMAC_Pkt") and to initialize the buffers and offsets appropriately for use by the
CSL layer. This function is typically called during EMAC initialization to initialize the Receive BDs or can
be called during a receive interrupt servicing to re-fill any empty BDs.
34 Generic EMAC/MDIO CSL Layer SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com Callback Functions
5.4.2 pfcbFreePacket

This function is called by the CSL layer to free the memory allocated for an EMAC packet (of type
"EMAC_Pkt") and any buffers held within it. This function is typically called during EMAC close, when an
error occurs, or during a Transmit complete interrupt handling for cleaning up the associated buffers.

5.4.3 pfcbRxPacket

This function is the driver-registered receive handler for all Ethernet packets received and validated by
the EMAC and handed over to the CSL layer when a receive interrupt occurs.

This function is required to save the packet buffer received to hand it over to the stack for further
processing. At that point, it is the responsibility of the driver/stack to free the packet buffer. This function
is also required to return a new EMAC packet buffer in return to replenish the BD just serviced.

5.4.4 pfcbStatus

This function is called by the CSL to notify the driver of a status change or the occurrence of an error
during EMAC processing (HOSTPEND interrupt).

5.4.5 pfcbStatistics

This function is called by the CSL to update the driver with the latest snapshot of statistics (STATPEND
interrupt).
SPRUFP2A—March 2015 Generic EMAC/MDIO CSL Layer 35
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

Index
A
acronyms 5
add_header function 14
alignment 12
APIs 5

CSL layer 13, 33
mini-driver 13, 18
NIMU layer 13, 14
overview 13

architecture 6

B
BD 5
bMacAddr field 17
bMCast field 18
Buffer Descriptor 5

C
callback functions 8, 34
Chip Support Library 5
configuration

APIs 13
device 17
EMAC 33
EMAC subsystem 16
MDIO 33
variables 21

CSL layer 5, 33
APIs 13
architecture overview 6

D
data alignment 12
data flow 9
data structures 33
doxygen output 33
DSP 5

E
EMAC 5
EMAC APIs 8
EMAC_close function 33

EMAC_enumerate function 33
EMAC_getReceiveFilter function 34
EMAC_getStatistics function 34
EMAC_getStatus function 34
EMAC_open function 33
EMAC_RxServiceCheck function 34
EMAC_sendPacket function 34
EMAC_setMulticast function 34
EMAC_setReceiveFilter function 33
EMAC_TimerTick function 34
EMAC_TxServiceCheck function 34
EMAC/MDIO CSL layer 33

architecture overview 6
description 8

error handling 35
Ethernet Medium Access Protocol 5
Ethernet mini-driver 16

architecture overview 6
description 7

EXTERNAL_MEMORY constant 21
EXTMEM constant 22

F
Filter field 17
flow chart 9

H
HAL layer 11
HASH_MCAST constant 22
header size 12
hEther field 17
hEvent field 17
HOSTPEND interrupt 35
HwPktClose function 18, 19
HwPktInit function 18, 19
HwPktIoctl function 20
HwPktOpen function 18, 19
_HwPktPoll function 18, 21
HwPktSetRx function 18, 20
HwPktShutdown function 18
HwPktTxNext function 18, 21

I
Init callback function 14
initialization APIs 13
SPRUFP2A—March 2015 36
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A

www.ti.com
Interrupt Manager 11
Interrupt_add function 12
Interrupt_delete function 12
Interrupt_disable function 12
Interrupt_enable function 12
ioctl function 14
ISRs 11

J
Jumbo Packet Buffer Manager 11

L
layers 6
LL 5
logic

buffer descriptors 8
ISRs 8

Low Level Packet Driver 5

M
Mac address 17
Management Data Input/Output Interface 5
MCastCnt field 18
MDIO 5
MDIO APIs 8
MDIO layer 33
memory manager 7
mini-driver 16

APIs 13
description 7

multicast addresses 18, 22

N
NDK 5
NDK core stack 7
NDK Interrupt Manager 11
NDK Support Package 5
NETCTRL module 11
NETIF_DEVICE structure 14
Network Control Module 11
Network Developer's Kit 5
Network Interface Management Unit 5
NIMU 5
NIMU layer 14

APIs 13, 14
architecture overview 6
description 7

nimu_eth.c file 15
NIMUDeviceTable structure 14
NIMURegister function 14
NSP 5

O
Operating Systems Abstraction Layer 5
OSAL 5

P
Packet Buffer object 11
packet buffers 22

allocating 34
freeing 35
receiving 35

packet flow 9
PBM object 11
PBMQ_rx field 18
PBMQ_tx field 18
PDINFO structure 17
Peer-to-Peer Protocol 12
performance 22
pfcbFreePacket function 35
pfcbGetPacket function 34
pfcbRxPacket function 35
pfcbStatistics function 35
pfcbStatus function 35
PhysIdx field 17
PKT_MAX constant 22
PKT_MAX_MCAST constant 22
PKT_PREPAD constant 12, 22
pkt_service function 14
poll function 14
polling APIs 13
PPP 12

R
RAM_MCAST constant 22
receive APIs 13
receive path 10
Rx 5

packet flow 10

S
sample code 15
semaphore object 17
send function 14
Serial Gigabit Media Independent Interface 5
serial mini-driver 7
SGMII 5
SGMII APIs 8
shutdown APIs 13
Stack Event object 11
start function 14
STATPEND interrupt 35
STKEVENT object 11
STKEVENT_signal function 17
stop function 14
37 Index SPRUFP2A—March 2015
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

www.ti.com
T
transmission path 9
transmit APIs 13

tuning 22
Tx 5

packet flow 9
TxFree field 18
SPRUFP2A—March 2015 Index 38
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRUFP2A
http://www.ti.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements
and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service
per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such
information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s
terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty
in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each
component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products
and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask
work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services
are used. Information published by TI regarding third-party products or services does not constitute a license to use such products
or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the
patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for
such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or
service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive
business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related require-
ments concerning its products, and any use of TI components in its applications, notwithstanding any applications-related infor-
mation or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and
implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen
the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its
representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s
goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety
standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of
the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended
for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use
of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for
compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any
case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive

Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers

DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps

DSP dsp.ti.com Energy and Lighting www.ti.com/energy

Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial

Interface interface.ti.com Medical www.ti.com/medical

Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity

	Network Developer's Kit (NDK) Support Package Ethernet Driver
	Preface
	About This Guide
	Intended Audience
	Related Documents
	Notational Conventions
	Trademarks

	Contents
	Architecture Overview
	1.1 Acronyms
	1.2 Ethernet Driver Architecture
	1.2.1 NIMU-Specific Layer
	1.2.2 Ethernet Mini-Driver
	1.2.3 Serial Mini-Driver
	1.2.4 Generic EMAC/MDIO Chip Support Library

	1.3 Flow Charts
	1.4 Background
	1.4.1 Network Control (NETCTRL) Module
	1.4.2 Stack Event (STKEVENT) Object
	1.4.3 Packet Buffer (PBM) Object
	1.4.4 NDK Interrupt Manager
	1.4.5 Data Alignment

	1.5 API Overview

	NIMU Layer
	2.1 Overview of the NIMU Layer
	2.2 NIMU APIs

	Ethernet Mini-Driver Layer
	3.1 Overview
	3.2 Data Structures
	3.3 Ethernet Mini-Driver APIs
	3.3.1 HwPktInit — Initialize Packet Driver Environment
	3.3.2 HwPktOpen — Open Ethernet Device Instance
	3.3.3 HwPktClose — Close Ethernet Device and Disable Interrupts
	3.3.4 HwPktSetRx — Configure the Ethernet Receive Filter Settings
	3.3.5 HwPktIoctl — Execute Driver-Specific IOCTL Commands
	3.3.6 HwPktTxNext — Transmit Next Buffer in the Transmit Queue
	3.3.7 _HwPktPoll — Mini-Driver Polling Function

	3.4 Configuration Variables

	Serial Mini-Driver Layer
	4.1 Overview
	4.2 Global Instance Structure
	4.2.1 PhysIdx: Physical index of this device (0 to n-1)
	4.2.2 Open: Open flag
	4.2.3 hHDLC: Handle to HDLC driver
	4.2.4 hEvent: Handle to scheduler event object
	4.2.5 PeerMap: 32 bit char escape map (for HDLC)
	4.2.6 Ticks: Track timer ticks
	4.2.7 Baud: Serial Device Baud Rate
	4.2.8 Mode: Device Mode
	4.2.9 FlowCtrl: Flow Control Mode
	4.2.10 TxFree: Transmitter Free Flag
	4.2.11 PBMQ_tx: Tx queue
	4.2.12 PBMQ_rx: Rx queue
	4.2.13 hRxPend: PBM_Handle to packet being received
	4.2.14 pRxBuf: Pointer to next character in packet to receive
	4.2.15 RxCount: Number of bytes written to RX packet buffer so far
	4.2.16 RxCRC: RX CRC running total
	4.2.17 RxFlag: Flag indicating that next byte is the second half of an escape sequence
	4.2.18 hTxPend: PBM_Handle to packet being transmitted
	4.2.19 pTxBuf: Pointer to next character in packet to transmit
	4.2.20 TxCount: Number of bytes yet to send from to TX packet
	4.2.21 TxCRC: RX CRC running total
	4.2.22 TxFlag: Flag indicating that next byte is the second half of an escape sequence
	4.2.23 cbRx: Pointer to character mode callback function
	4.2.24 cbTimer: Pointer to HDLC timer callback function
	4.2.25 cbInput: Pointer to HDLC input callback function
	4.2.26 TxChar: Second half of escape sequence
	4.2.27 CharReadIdx: Character buffer read index
	4.2.28 CharWriteIdx: Character buffer write index
	4.2.29 CharCount: Characters stored in character buffer
	4.2.30 CharBuf: Character mode input data buffer

	4.3 Serial Mini-Driver Operation
	4.3.1 Receive Operation
	4.3.2 Transmit Operation

	4.4 Serial Mini-Driver API
	4.4.1 HwSerInit - Initialize Serial Port Environment
	4.4.2 HwSerShutdown - Shutdown Serial Port Environment
	4.4.3 HwSerOpen - Open Serial Port Device Instance
	4.4.4 HwSerClose - Close Serial Port Device Instance
	4.4.5 HwSerTxNext - Transmit next buffer in transmit queue
	4.4.6 HwSerSetConfig - Set Serial Port Configuration
	4.4.7 HwSerPoll - Serial Polling Function

	Generic EMAC/MDIO CSL Layer
	5.1 Overview
	5.2 CSL Data Structures
	5.3 EMAC APIs
	5.4 Callback Functions
	5.4.1 pfcbGetPacket
	5.4.2 pfcbFreePacket
	5.4.3 pfcbRxPacket
	5.4.4 pfcbStatus
	5.4.5 pfcbStatistics

	Index

