Tl Network Developer's Kit (NDK) v2.24 API

Reference Guide

I3 TeExAas

INSTRUMENTS

Literature Number: SPRU524|
May 2001—Revised July 2014

I3 TEXAS
INSTRUMENTS

Contents

L 5] =T = 9
1 0T 10 o o PN 11
11 What ThiS DOCUMENE COVETS .uuuttiuseiutersstassssst s sss s ssas s s s s st s sassan s s s sannasanesannsrnns 12

1.1.1 Supplemental APl INfOrMatiON ...uuueisssiiseiiri s s rar e e nans 12

2 Operating System ADSEIraction AP ... e e e eas 13
2.1 Operating System CoNfigUIAtiONeiisieeeeseiieseeiessaieessaaneessaaneessaanneessannrersaanneesssnnresssnnness 14

P22 0 R @0 T U = LA [0] (U1 (1] 14

2.2 1= TS o] o0 o 16

P22 R ¥ Tox 1o 0 T O 1Y = 1= 16

P2 1= 1 N T U T o 16

2.3 Y= T T T o] o £ =S U] o o] o R 21

P22 T R ¥ (g Tox 1o 0 T O Y= 1= 21

2.3.2 Semaphore API FUNCHONS . .uuueeiitiriteiiseirae s et s s s s s a e sa s s a s s e raneaannens 21

2.4 /1T 0 o] YA Y | ToToF= o 0T U o] o Lo o AN 24

P22 R ¥ (g Tox 16 0 T O Y= g 1= 24

2.4.2 Memory AlloCation APl FUNCHONS 1. uuuuseissiite it s e sa e s s s saan e raneaas 24

25 LT 1= T o I 1= o TH o 0T U o oo) S 25

2.5.1 Standard APl FUNCHONS 1.uusiseiseisisersererssas et ssa e saseaaernes 25

2.5.2 DebUg AP FUNCHONS 1.utietiitsiseisterae s st e e r s s s s s e e s et s n s s r s s e e aaneans 26

2.6 File 1/0 Support for Embedded Sy StemISttt st st saaiass s aaaas s saaass s saanssssaannnensns 26

P22 25 R ¥ (g Tox 16 0 T O Y= 1= 27

2.6.2 EFS CUStOM AP FUNCHONS .1 tuutt ettt s sste e s s s s s s s s e e s asa e s s sn s aaneans 27

2.6.3 EFS Standard APl FUNCHONS 1. uutistiiseiissiisssisserseiissesisssassssisssaasssasesasssisssaseraseiannens 31

2.7 INterrupt ManagemMENt SUDPOI . s strrrreesssnnnmeessstimsssssssnsnnnnnnns 33

P2 0 R @ o T U = Lo] (U1 (1] 34

2.7.2 FUNCHON OVEIVIEW Lttiistiiustistsraseiastessesassssss st rasetassesastsastssasssaanerasetasesanrtannersseins 35

2.7.3 Interrupt Manager APl OVEIVIEWueeeiiieeeeeseanneessaannessasnnesssanneesassnnessssnnessssnneessennnensnn 36

3 SOCKEtS and Stream IO AP ...t 38
3.1 File DesSCriptor ENVIFONMENTttt era e e s r e e e sa e et s s e s saanas et san s e s saann e s ssannnessannnresnnnn 39

0 0 R O o =1 2= 11 o 39

3.1.2 Initializing the File System ENVIFONMENTuiueeiieeiiieriirerias i i saeesiassasssiassanneraneaas 39

3.1.2.1 When to Initialize the File Descriptor ENVIFONMENTvviuiiiiiiiiiiiiini i niaeannens 39

3.1.2.2 Auto-Initializing the File Descriptor ENVIFONMENTeiiiiieesiiiiieiiiiiesisiiasssiinnsssiaansnessas 40

3.2 File Descriptor Programming INTErfaCEuuieeiiiirieii i s s ne e 40

3.2.1 FUNCHON OVEIVIEW 4 ttiistiusssustssasssaseessssassssasssaatsssetassesa s sassssaassaanerasetasesanrsannssnnesns 41

3.2.2 File Descriptor API FUNCHONS ... uuutiiieteiiiatssssits s ssisnesss s s ias s ssaans s saanaesssannssssannnensnn 41

3.2.3 File Descriptor Set (fd_SEt) MaACIOS .. .uuuviuseiitirteiatiriss it esre e saee s siarsanesas 47

3.3 Sockets Programming INTEIACEuueietiiiiiiii i s 49

3.3.1 Enhanced NO-Copy SOCKEt OPEIatiON ...euivuuuesissssesirissnessaisrsssaanssessansnessaannssssinnrssssinness 49

3.3.2 FUNCHON OVEIVIEW . ttustiiueeistssassistsssesass s sassaasssae s e s s s s sa s s sas s aa e s s a e aan s san s aannssaneans 50

3.3.3 SOCKELS AP FUNCHONS. 1t uttiuatssaseisesssesassssse s rae s s s st s saa s sar e s s e tasesanrsanneraneaas 51

3.4 BSD Sockets Compatibility AP LAYEr ..uuuiuuieiiiieieiiiisersiissrsissssiias s ssaiae s ssaasssssasnssssaannnsssas 69

3.4.1 Using the BSD Sockets Compatibility Layer.......vveevieiiiiiiiiiiie s rnaenaaeens 69

3.4.1.1 Things to Remember About BSD Compatibilitycevvieiiiiiiiiiiiiiiiiin s 69

3.4.2 File Descriptor APl FUNCHONS ... uutiitteiiistsesaitsessssnesssiaessss e s ssaan st saanaesssanas st sannnensns 70

2 Contents SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com

3.4.3 SOCKELS AP FUNCHONS. 1t uteiattste it sste st sassaas s et e s s s s s s s s s a e sa e s s n e sa s s sn e sannesaneans 73
3.5 Raw Ethernet Sockets Programming INterfaceuevvueiviseiiiiiiiiiniiri i raeaas 89
3.5.1 FUNCLION OVEIVIEW 4tttuuatssiassessssesssssssssasesssassssssaassesssassnsssasnesssannnssssnnnsssssnnsesnns 89
3.5.2 Raw Ethernet SOCkets APl FUNCHONS ..uuvuutiitiriteiieinieeiastssisssasessssaaessinsranssssssannsannesas 89
3.6 Full Duplex Pipes Programming INtErfaceccieeiiiiiiiiiiii e r e rane e aaas 96
G200 R T = T 1 Tod o 97
3.7 Internet Group Management ProtoCol (IGMP).....uuiesiitiiieiie s saeenas 97
4 Initialization and CoNfIQUIAtIONeeeii e e e e e e e e e e e e e e 98
4.1 (0] 0 1{To T8 T =10 TN 1Y, 1= 1 T T LS 99
4.2 Network Control Initialization Procedure (NETCTRL) +vuiiieteiiiinteseainnesssannessaasnnesssannesssnnneesssnnnessns 99
s R 111 = 4= 1o T 0T =Y 1= 929
4.2.2 FUNCHON OVEIVIEW .. uetiiatessae e ssaase st ass st s st s s sa s e s ss s a s e s s n e s s s aa e s s aannessaannnsssnnnns 100
4.2.3 Network Control AP FUNCHONS .u.uuiutistisinsirseieinssssreiesssssasrssssssssnsaesnssssssnrassnnens 101
5 Network Tools Library - SUPPOrt FUNCLIONS ...veiiiiii e e e e e e e neene 104
5.1 (1= =T oS T U o] o Yo o A = 1 3 105
S0 0 R B Tt 0 Y= = 105
5.1.2 Network Tools SUpPOrt APl FUNCHONS ..uuueeietsiieiiinite i isiss st ssssaasssrs e ssessannsanes 105
5.2 [T ST U o] 0o 7 1 111
5.2.1 FUNCLON OVEIVIEW 4 tttinatessaeeessaesssssse s ssasaes s sasase s saass s st saan s e s saaan s s ssannnsssannsssssnnnsss 111
5.2.2 Standard Types and DefinitioNSuiueiiueirieiiiiiie i s e nns 111
5.2.2.1 HOSt ENtIY StrUCIUIE. .. .utiiiiiitiii i i s a i n e anaas 111
5.2.2.2 FUNCLON REIUIMN COOBS .utuiiintteiinteiriitsessisnsssaiase s ssasesssassesssansnsssannssssaansnessns 112
5.2.3 DNS SUPPOIt APl FUNCHONS .1 uteiatitesissisassiatssse s ssas e ssa s s s s ssssanssan s saneaanesanns 112
5.3 LI L S 10 0] 01 114
5.3.1 TFTP SUPPOrt AP FUNCHONS ... uuttiiatteisiieeeissiase s ssissesssasse s ssassss s santessaannnsssannnsssannnss 114
54 TCP/UDP Server DABMON SUPPOI wuueuueeuseiuesssssssss s ssss s tssssasssasssasssansssasisisssirsannsins 115
5.4.1 Server Daemon SUpport AP FUNCHONS ...uuriruseiiseiiseiisisisesiassss i s sassssessnnrsansesans 116
5.4.2 Server Daemon EXampIe ..o s 117
6 NEtWOIK TOOIS Library - SEIVICES .ttt aa e as 118
6.1 Service Calling CONVENTIONS +.uuueiuueiuseissirsesseerss e srs s ss e sa s tas s s rannernes 119
6.1.1 Specifying Network Services Using the Configurationvvvieeiiiiieiiiiii i e 119
6.1.1.1 Service RepPOrt FUNCHON ..iiiiieeesiiieesiintessasnneessannresaasnnessaanneesaasnnessssnnesssnnnnensnn 119
6.1.2 Invoking Network Services by NETTOOLS APl ...uuiiiiiiiiiiiii s s aaaes 119
6.2 JLICE L LTS ST V=T ST o 121
6.2.1 Telnet Parameter StUCIUME ... uuisisersertissase ettt aerr s 121
6.2.2 Invoking the Service via NETTOOLS APl ..uiiuiiiiiiiiii i s s naees 122
6.3 [(O ST V=T Y= o N 122
L T84 R @ o =1 - o1 122
6.3.2 DHCP Server Parameter SIIUCIUIEuuuseiiisteeirist s s asas e aaare s raanrerraanes 123
6.3.3 Invoking the Service via NETTOOLS APl ... uuuiiiiiiiiiiii it s s s s sas e s snnnna s saanns 123
6.4 [(@ = O 11T | AU o] o o] o S 124
LS Nt o T - 11T) o 124
6.4.2 DHCP Client Parameter StIUCIUNE ... uutsiiiiete it eraie e srr e sa s ssaas e s saannassaannrassannnes 125
6.4.3 Invoking the Service via NETTOOLS APl ...ttt i siisn e sassse s ssannee s sannessannneesannnes 125
6.5 L I I Y= V=T T o] 0T o 126
L5700 R @ o 7= - oo 126
6.5.2 HTTP Server Parameter SITUCTUIE ..uviuiiiisiiisiiiisiiisiiiiii i ssasnsaans 126
6.5.3 Using the HTTP Server and Adding Web Contentuvvveiiiiiiiiiiiiiinri s 127
6.5.4 Invoking the Service via NETTOOLS APl ...ttt i s i sraae s snanna s s aanns 127
6.6 [N RS TS T= =T oY ot 127
LSS T00 R o T - 11T) o 128
6.6.2 DNS Server Parameter SIrUCIUMNEiiseeieiieeeiiiiisiiiiiisssssssssssssaaaiissssrrssssssssssnns 128
SPRU524|I-May 2001 —-Revised July 2014 Contents 3

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com
6.6.3 Invoking the Service via NETTOOLS APl ..uiiuiiiiiiiiii i s s s e s snaees 128
6.7 Network Address Translation (NAT) SeIVICE ..uuiutirteiiseiii i raaeias 128
LT 00 R O o 7= - 1o o 129
6.7.2 NAT Server Parameter StIUCTUNE vuuu . iisstttteesssssssssssssssssssssssssssssssrsssssssssssnmreessssssmnns 129
6.7.3 Invoking the Service via NETTOOLS APl ..uiiuiiiiiiiiiiii i s s s e 129
INternal StaCK FUNCHIONS ... ettt e e e e e e e e eees 131
B N O 1= 1 132
A1l Interrupts and Pre@mpPtiON v ue st 132
A.1.2 Proper Use of the lIEnter() and IEXit() FUNCHONS. ... e i rr e s rare e rnannneeaas 132
R O T o] 1Yo £ 132
A.2 StaCK EXECULIVE (EXEC) 4uuuuuiiniiiteiistinteistisas st s e s e s s s s s s s s s s e s r e s n et s e e s nraanees 133
Nt R L 0 o 1T L 133
A3 Packet Buffer Manager (PBM) ObjJECE ..uuiiiuiieiiiitesiiieessainressasnneesssnnessaanneesaannnessannnesssnnnnnsss 134
N 20 A 1= o 1Y/ 1= 134
A.3.2 APL FUNCHON OVEIVIEW ..t teeetsiaee st ias st saate s saass s ss s s s s s aaa s s s s saan e s s s an e s saannssannnessnnnns 134
PAN0C Toc Y o B =0 g Tox 1 o) o TN B =TT od])i o o 135
A4 Packet Buffer Manager Queue (PBMQ) ODJECT ...vuiuuiiiuiiiintiiiriseiiteriseiassie s rasssas s sanenaneans 138
N St R © o= o A 5/ = 138
N o Y o U 1ot 0] I @ =T o 138
A.4.3 AP FUNCHON DESCHPTION 4 tuuuseiatesuseisessnesasssssssssssse e ssse s sssssanrsaaresasessanssannssns 139
A.5 Jumbo Packet Buffer Manager (Jumbo PBM) ODjJECt......uviiiiiiiiii i e eaee e 140
A.5.1 AP FUNCHON OVEIVIEW 1 utusesseiatsassserserassssse e s sssass e s s s e e sas s s e e saesaseanernes 140
A.5.2 API FUNCEON DESCHPTION 4 tuuuttiuatsiaseisessnesassssass s sssesasesssesasssssssanssasesasessanesannsnns 140
A.6 Stack Event (STKEVENT) ODJECE ...ttt sttt e r s s s s as e s s s an e s saanaa s s aannns 142
N 700 R @ o] 1Yo AR 3/ = 142
A.B.2 API FUNCHON OVEIVIEW ..ttt tseeeeetaaeeetsaanee s seaase e ssaneessaanne s saanneesaannnesaaannessannnensnnnes 142
A.6.3 API FUNCHON DESCIPLION 1 uuuueeiiiaeeiatessaate s ssaasse s saase s saaans s ssan s e ssaaansssaannsssaannrsssnnns 142
A7 Link Layer Information (LLI) OBJECT .uuueiiiieetiiie e si i s esnee e sesane e s saann e s saanneesannnnessannnessaannnnsss 143
A.7.1 ARP ReValidation LOGIC ..uuuuseiuutirteiseiieerississssissssse e ssessasssssssinssasssasesannssannsans 144
N A © | o] 1o A 5/ = 144
N A T [1 o] o (10] 1 (o] 145
A.7. 4 APL FUNCHON OVEIVIEW .. eeetseiee e teaeeetsaate s saaasa e ssaneessaanse s saann e e saannesaaannessannnersnnnes 145
N T Y 0 o 1T L 146
A.8 [(=T = LTI L T o] 1= X P 148
R 20 A 1= o 1Y/ 1= 148
A.8.2 API FUNCHON OVEIVIEW .. teee s iiee st iats st saate s saaass s ss s s s s s aaa s s s saaan e s ssaa e s saannesaannsssnnnns 149
A.8.3 AP FUNCHON DESCIPION uuuutettiieeeteaseessaannessaanneessanneessaanneesssnnressssnnessssnnessssnneessnnns 149
A9 1 =T o= o 151
R TNt R © o= o A 5/ = 151
A.9.2 API FUNCHON OVEIVIEW 1. tustssesattasisersesassssssraesassassas s e sar s e e s s e saeaasesnernes 151
R T T Y = 0 o 1T L 152
N0 KO T =11 0o 1o O o =T o 154
00 K0 Tt @ | o =Y o3 1Y/ o= 154
A.10.2 BIND API FUNCHONS .t e ettt ts et et s aate e s aee e ss e e e ssaaan e s sa e e e ssann e s sanne s sannnnnssannnessnnnns 154
N0 5 R = Lo (= =T o 156
0 0 A @ | o =Y o2 1Y/ o= 156
A.11.2 Route Entry FIags Definition ..u..ueiiseiiieiiiiiiiiri s s s s 156
A.11.3 Route Entry FIags GUIOEINESuueiiiiiiii i s s te s s s s s s s s s nr e snaneeanaas 158
R o I N] U ot 1o 159
N0t 2 o {01V 1 (= @0 o110 B o= o 163
A.12.1 ROULE CONIrOI IMESSAGES . uueeiineneiananessaiasessaasasessaantessaantsessanssssaannssaaannsssssnnssssnnns 163
A.12.2 Route CoNtrol APl FUNCHONS. ..t usiseiseitrsise e aaerr e 166
A13 ConfiguriNg the STACK «.uuueiseiieiii i e e et r s s s r s n e aaans 166
Contents SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com
00t 20 R O o o7 18 7= Lo TS 1 o 11 167
A.14 Network Address TranSIatioN. ettt e e s e e s e s s e s s aaann e s aaan e s saannessannns 175
01 0t R O o T > o o 175
A.15 Network Interface Management Unit (NIMU)uuuiieeiiiinieiiiniris s e sses s sssssannsssssaneans 176
NNt 0 O T o1 176
A.15.2 Data Structure Definitioniviieeiiiiiii i 177
A.15.3 NIMU CONfiQUIAtION «uuuuesiissiieeiite s r s s e r e e r s s s s s n s saa s sananannaans 181
A.15.4 API FUNCLON OVEIVIEW .. uuutteiietetsatssssaasssssanssssaannssssansesaannssaaannessaannnsssnnnnsssnnnes 181
A.15.5 API FUNCLION DESCHIPION 1 uuutsiiissesisissessastessassssssasesssaaassssaaanssssannsssaannsssasnnesssnnns 182
A16 Virtual LAN (VLAN) SUDPOI . . et attsate it asesrsesnsssasssasssas s s saaesas s sas s saa s s saa s saanssansaannssannsnns 185
NNt G0 S T T o1 185
A.16.2 User Priority Mapping CONfigUIationueeessieesissiesisiiesississsssissssssassessannssssaannnssas 186
A.16.2.1 User Priority CoNfIQUIAtioNueiueerssisseitirse it ssns s sssssannsenseanns 186
A.16.2.2 Marking PacCKet PriOMILYccueeiiieie it re e s e s s s ar s s aan e s saaann s s aaanneess 188
A.16.3 API FUNCLON OVEIVIEW 1 1uusttiiisssessistssssssssssaassessaasssssaissssssssnsssssnnsstsssnnsssssnnssssnnns 189
N0 2 2 o I W oV o1 189
N A = - A1V =1 1= 1= 1/ oo [191
R 00 R V0 T 0L 191
A.17.2 Raw Ethernet Data Prioritization - Socket Priority USe Case.......vvvuiiriuiiiiieiiieiiieririiineine, 192
A.17.2.1 Socket Priority CoNfigUIatioNot s rr s s e s raanr e e raan e aannneas 192
A.17.3 API FUNCLON OVEIVIEW . 1uustetiiassessastssssssssssaasssssaaassssasssssssassnsssssnnssisssnnsssssnnssisnnns 193
0 S A o I W Vo o1 194
F N R @ o) =Tl 1o S = o] QS] r= L1 [(00 195
B Network Address TranSIatioN e e e s 196
B.1 [N 7N @ o 1= - o o PP 197
B.1.1 Typical CONfIQUIAION . uuuuuesissiseiiter st s e s s s s n e s r s n s n e s n s aaneens 197
2 7007 = 7 1] o 1 197
T I0C T AN I = T 1Y/ =] 1 o S 199
2 700 0 S N N I 3T 11 (=T £ 202
B.1.4.1 Problem SYNOPSIS . uueeiiitiiiiiteiiaites it raate s saar et 202
B.1.4.2 Problem Example - FTP Clients on the LAN......viiiiiiiiiiiii e rsiee e sier e ssnnnee s snnnneesnnns 202
B.1.4.3 NDK Support for ProxXy FIlEIS ..u.uueiieiiiiiiiiiri i 204
B.1.4.4 FTP Proxy Filter EXample Codeuuieiiiiiiiiiiiiie s iriss s srnans s rsnns s ssannnessanns 205
B.2 NN AN I 0T 1/ = o [N 207
12 2 R ¥ [Tox 1o g T @ Y= VTN 207
B.2.2 NAT Entry Information STrUCIUIE uueei ittt e r e s s sr e e s s aan e saanaenas 207
B.2.3 NAT AP FUNCHONS +1utisiiutieisisstraeisssssaers s sae st sa e e ra e aarenes 208
B.3 N 14T 11 =T 209
123 20 R ¥ Vo 1o g T = VTN 209
B.3.2 NAT Proxy Filter Callback FUNCHONSiiiiiie it iiiee s iee s s s s s nnnee s s annne s saanneesaannnens 210
B.3.3 NAT ProXy APl FUNCHONS. .t uttistiiteiastsssesatssse e sssesaasssas s sase e s sasssasssannens 211
C POINT-T0-POINT PrOtOCO] ... e ettt et e e e e e e e e e e e e e e e nenenenes 213
Cl1 I T I oY T o] o T 214
L0t 0 A o o =T - o o 214
{30 0z U {4 0 @ Y= = 215
L0 0 T B o] Lo 1= 0 = £0] (oo] 215
C.1.4 Sl Module Callback FUNCHON . ..uuueeiitiite i e e r s r s r e raaeaaneens 215
{0 0 e R = U Uod o 0T = = 4o) o 216
C.1.42 SI_MSG_CALLSTATUS MESSAQTE .tuuutruriunrnsernrrnninsssesnisiissssesiniassassresarasansies 216
C.1.43 SI_MSG_ SENDPACKET MESSAJE .uuererruunrrirmsnesirmnsnesrassnessrasrersaasnssrsinnrermaines 217
C.1.4.4 SI_MSG_ PEERCMAP MESSA0E ..t uutuuttutrtianrrnniesisssntrasinssassssinsinssassirianimnemness 217
C.1.45 Example Callback Function Implementationoeeeeiriiieriiniieiiii s sainessaanns 217
C.1.5 Tips for Implementing a PPP Serial Interface (SI) Module INStanCeccvvveiieerviiineniiainernnnnes 218
SPRU524|I-May 2001 —-Revised July 2014 Contents 5

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com
C.1.5:1 MUIIPIE INSTANCES +uueiietiieiiie ittt s e s e s s e s s s s s s e e raa e aannens 218
C.1.5.2 UsSINg the TimMer ODJECT ..ttt e s e r s e s s s s e s aaanne s saannnessannnerann 218
C.1.5.3 Registering Packet Padding ReqUIr€mMeNtSvviiiuieiiiiieiiiiiie s i ssinnressanns 219
C.1.6 PPP AP FUNCHONS 4 1uuttiuattsateistessesasssssssasssss s sssssaasssasssaatssassssnssanssansssassssnness 219
C.2 Serial HDLC Client and Server SUPPOIT «...uuurssssssiisterseiaseessssasssssssassssass s 222
LT I ¥ [T 10 I @Y= T 222
C.2.2 HDLC APl FUNCHONS & utttstistssstssasssssssass e sasssss s ssasssaassaasssasssasessanssansssanssannssnnsins 222
C3 PPPOE Client and Server SUPPOIM. ... tieteeiaattessaaatessaanesssaansesaaaans s ssannssaaannessaannnsssannnessnn 226
LT T A ¥ [T 10 I @Y= T 226
C.3.2 PPPOE APl FUNCHONS .ttt ittt sa st e s e s e s s s s s s s s st sra s s s s e saan s rn e s e anness 226
C4 Creating PPP Server USEr ACCOUNTS uusetrstisserssiatessssassssisssasss s sassssase s rarsrissranes 229
C.4.1 Adding and ReVieWing USEr ACCOUNES ..uuuuuuutsrrsnntsssnnsssainnssssannsssssssestsassnsssannnsimannns 229
C.4.1.1 Adding @ PPP USEI ACCOUNT uttuuteiseissssstssasssassessssasssssssassssasssansssnsssanessnnssanns 230
C.4.1.2 Searching for @ PPP USEr ACCOUNTuueiiieeiiaiteeiaatesssaannessaannsessannsessaanneeaaannness 230
C.4.1.3 RemoVINg 8 PPP USEr ACCOUNT .uuuiuustesisssssssassesssassssssansssssaassssssannnsssssnnsssssnnnes 231
Hardware Adaptation Layer (HAL) . ..oiiieiiieiie et e e e e e e e e e e aeas 232
5 0 R O 1T 233
[200 00 A N I U od T I 01N 233
D.1.2 External Calls from HAL FUNCHONS ...uuiiseitiisiseieieisssraresesssesa e snsssassae s saesnnaes 233
D.2 Low-Level LED DriVer (IUSEILEA) . uuuuueiueirssississssnsterseiasssissssasssssssasssassssinssansssnsssansssnness 233
[2 B ¥ [Tox] =T o T 233
D.2.2 Low-Level LED API FUNCLONS +.uuutiutisiiseitisiissrse s e sssnsssas s snnssaesansaes 234
D.3 Low-Level Timer Driver (IITIMEr) ... ue i eeiisteraesaters e r s s r s s s s r e ra s s aannenas 235
[20 0 R ¥ [Tox 1] =T o 1= 235
D.3.2 Low-Level Timer APl FUNCHONS. ..ttt s enne e 235
D.4 Low-Level Packet Driver (IIPACKEL) ... uu ettt s r s s s s s r s s s s reenas 236
[R ¥ [Tox] =T g 1= 236
D.4.2 Low-Level Packet API FUNCHONS .vuvisiisiiniisiis i n e 237
D.5 Low-Level Serial Port DrVer (IISEMal) vuuuueirueeisiiieiiisiri s rneaas 240
[80 B ¥ [Tox] =T o 1= 240
D.5.2 Low-Level Serial APl FUNCHONS. ..tutieiiseiserisirse s e s 240
Web Programming with the HTTP Server........coocoiiiiiiiiiii e 245
E.l F X (o 1o TR YA =] o @0 1 =1 o] S 246
Ot R O 0T 1T o 246
E.1.2 Converting Standard HTML FileS ..uuuuiiiiiiiiiii i e rae e 246
E.1.3 Declaring HTML FIleS 10 EFS ..ttt e r e e s r e s e e s s e e s aanne s 246
E.1.4 Cleaning Up HTIML FleS .ottt i s s s s s s s s s s s ss e s s s anne s asannnenss 247
E.2 LT T I 0 Tod 1o 247
E.2.1 Adding FUNCLIONS t0 the EFS....iuiiiiiiiiii s s nes 247
R O €1 B ¥ [Tox 110 I 0T =Tod = 1 o 247
2 B - 1= 1T @ €1 I oy T - - 248
E.2.4 Parsing CGl MUlti-Part FOMM Datal.ueuiieieiiiiiteiiaiteeraaaeessaanssssaane s saannessaannessaannnessn 248
E.2.5 Sending HTTP/HTML REPIES .. uuiiieiiiiieeiiite it st sraiae s s s ssanss s asaae s aaannenss 249
E.2.6 HTML ErfOr RESPONSE 1uueiiistteiiustesissstessastessaaseessasressassesssassessaassnesiassnnsssansnenins 250
E.3 L I I W7 (0T T o 251
E.3.1 AUthOrization REaIMS...uiieiiiiiiiiiiiiiiiiii i i nannans 251
E.3.2 USEI ACCOUNTS .. utttiastetrateessaseessaase st e e taaaa e et tr e e et s s e e s s a s e e et s s r e s rann e aaannreannns 252
E.3.3 Designating ProteCted FileSoviueiiiiiiii it r e s s e s ra e s s raanne s saannneens 252
E.4 (1€ I U T Tod 110 o T =T = 0 o] = 253
E.4.1 Create the HTML PAge ..uuiiiuiiiiiiiiiiiii s et r s s s e s s e ra e aannens 253
E.4.2 Create the Base WEBPAGE SOUICE File.....cuviiiiiiiiiiiiiiiini s naeaas 253
E.5 HTTP Server EXPorted FUNCLONS . .uuueiiiieietiitseisiste st ssiss e ssaaes s ssanss s ssanasessannsnsssannnessas 255
E.5.1 CommMONIY USEA SENGS 1uutiuueiiatiiuteiseiiterseiasssss st sisssassrss s ssanssansssasssannsannsins 255
Contents SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com
T2 ¥ [Tox 110 @ =T o 1= 256
E.5.3 HTTP Server EXported APl FUNCHONS +..uutiruseiiseisserississesissssseiasessisssasssssssisssansssnneias 256
F IP Version 6 (IPVB) StACK AP et e e e e ee e 259
F.1 L5310 o £ £ 260
F.2 AP| FUNCEIONS @Nnd Data StrUCIUIES uueiuuseiseisseesstisssssssssse s sssssisrsaass s sasssanssssssanrsannesns 261
0 A S Tox (=] ST o] o] (o |G N 261
N (01311 (=T o)1 262
G TS 1o o3 (= o] 1T 262
L 0 =TT 310] 262
L7 N\ =Y 1 (0o SN o] o] o= Lx [1 1= S 263
2Tt R 1= [T 263
F.2.5.2 WWED SOV ittt e 264
T T I e I 264
R0 I | 1S R =T o | N 264
F.2.6 Configuring the IPV6 STaCKoiieiiiiii e e e nn e e eas 268
G Legacy Configuration Manager APl ... e 269
L% A @o T U] = LT 1Y/ i T o 270
(7 @70 oo [N = 140 01V = g = To = N 270
L R B o3 1o T O =T = 271
G.2.2 Configuration APl FUNCHONS . ..uiuusiistiite ittt ssssassssssaaess s sanessassannssaessaneens 272
G.2.3 Configuration Entry API FUNCHONSueiiiiiiiieiiiiiesraieesaaiaee s saaae s ssanne s saannassaannnesaannnes 282
G.3 Configuration SPECITICALION «..uuussiistteiriee st r et s e s s s e s saar e s e r e aaas 285
L T80 R O (o - 1 2= 1o o 285
G.3.2 Network Service Specification (CFGTAG_SERVICE) ...ciiiiiiiiiiiiiiiiiiinininsnsenaas 285
LT T R 1= Tt Y/ 0T 286
G.3.2.2 CommON ArgUmMENTt STIUCTUIE .. uuuesiisseesissteeisasseesrasre s raas e rsan e sraarssaaannnes 286
G.3.2.3 Individual Configuration Entry INStance StrUCtUIrES.cvviiiereiriiieiriiie e srainnessnaaessaannss 288
G.3.2.4 SpecCifying NetWOrK SeIVICES . ..uueiiiettiiiiteiriieriir s rraies s arie s ssasre s saarasssasnesias 289
G.3.3 IP Network Specification (CFGTAG_IPNET) ..utiiuiiiiiiiiiiiiii i inrssse s snnssnnns 292
G.3.4 IP Gateway Route Specification (CFGTAG_ROUTE) ..vvvtiiiiiiiiiiiiii i isssssiansnaes 293
G.3.5 Client Record Specification (CFGTAG_CLIENT) . .uuuutiiiiiteiiiirsiiiissisiisesisisssssannnssssannes 293
G.3.6 Client User ACCOUNt (CFGTAG_ACCT) tiuutiiuurrnterneiantssseiansssisssansssissiansssnnsiansiaisssanns 294
G.3.7 System Information Specification (CFGTAG_SYSINFO)....uivieiiiuiiiiiiiiiiiisininnenaaes 295
G.3.8 Extended System INfOrmMation TagS «.uueeerriuuererriinnsiriieeeisiiaesisaissesisansessannsessaannressannnes 295
G.3.9 OS/IP Stack Configuration Item Specification (CFGTAG_OS, CFGTAG_IP)...civiviiiiiiinniniennnns 296
L {01 (= 2= o g I o €0 o =T o 0 - 298
H VAT o] g I 1 Ko] Y/ PP 299
SPRU524I-May 2001—Revised July 2014 Contents 7

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
3-1. Raw Ethernet BUuffer FOMMALcoiiiiiii it aer e s s e s s e e s s e e s snann e e aaanneeannns 93
3-2. Raw Ethernet BUuffer FOMMALueiieeiiiii it s e s s r e s s e s s s n s aaannneanaas 94
A-L. NIMU ArCHITECIUIE .ttt eee e s aeete e s et e e ssaanee s s e anne e saan e e ssannessasnnnssaannnessannnnssaannnnssannnesssnnnns 176
A-2. VLAN Module Placement in NIMU Enabled NDK StacK.......cooiiiiiiiiiiiiiiiii i rnine s rnnaaee e 185
T N - 3]0 [186
A-4. Raw Ethernet Channel Manager Module in NDKuiiiiiiiiiiniiis i i riae e 191
B-1. Basic Home Network CONfIgQUIationeeiiieiiiiii i rr e e raaar e s ssan e s ssan s e srannn e s aaanneeannns 197
B-2. Public Servers on the HOme NetWOrKo..eeeiiiiiiiii i i s ann e aaaas 201
C-1. Standard PPP Frame OVer Serial LiNeueuieeriueiitiritirteiiseisisesasssssssinsssnssansssnnssansssnnssnnes 214
C-2. PPP Frame Processed DY PPP APlt a s e s s s s s s s aane s saannn e s sannenans 214
C-3. Serial INterface (SI) ADSIIaCTION ...t uetetrateersie s sra i s saas et saaaae s ssanst st saanressaannnesas 214
F-1. NDK IPv6 Architectural BIOCK DIagram «....e.ssssuseiseinseiiseissssissssss s sssssasssssssannssnnssanssanness 260
F-2. Internal Architecture Block Diagram for SOCKEt LaYervvueiieiiiisiiiiiriiinii s naaes 262
F-3. IPv6 Stack Instantiation PlaCemMENtuiviueseiiiiieiiiie i r i s s sssa s asanae s ssannesias 268
List of Tables
Nt 114 T= T G 180
N [T I I o] 4o =T L 184
R S =T o = LI 2= 1] o] 1 T 184
A-4. User Priorities for Traffic AQreemeNt r s s e raa e e s aaanne s aannes 187
H-1. Document REVISION HiSTOY .. uuuueiiistseisuteirstssssiiaes s s ssaae st saisae s ssanas st saa s e s saannnsssannnssnns 299
8 List of Figures SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I

TeEXAS

Preface
SPRU524|-May 2001-Revised July 2014

INSTRUMENTS
Read This First

About This Manual

This programmer's reference guide describes the various API functions provided by the NDK libraries, and
is intended to aid the development of network applications. It is the central reference document used when
programming the stack. See the Tl Network Developer's Kit (NDK) User's Guide (SPRU523) to familiarize
yourself with the stack libraries, NDK configuration, and using the stack with the SYS/BIOS and Code
Composer Studio™ Development Tools.

The latest version number as of the publication of this guide is NDK v2.21.

The document covers NDK programming as it applies to the TMS320C6000, Cortex-A8, and ARM9
programming environment,.

How to Use This Manual

This document contains the following chapters:

Chapter 1: Introduction summarizes the various API sets described in the NDK documentation.

Chapter 2: Operating System Abstraction API describes the APl used by the adaptation layer to
access the operating system.

Chapter 3: Sockets and Stream |0 API describes the file and sockets API functions.

Chapter 4: Initialization and Configuration describes the XGCONF configuration method, the NDK
initialization sequence, and the Network Control module.

Chapter 5: Network Tools Library - Support Functions describes the network support functions
contained in the NETTOOLS library.

Chapter 6: Network Tools Library - Services describes the network servers and services contained
in the NETTOOLS library.

Appendix A: Internal Stack Functions contains a partial list of internal stack functions provided to aid
in the comprehension of kernel oriented calls.

Appendix B: Network Address Translation describes the optional Network Address Translation
component, how to set up virtual networks, and protocol proxies.

Appendix C: Point-to-Point Protocol describes the operation of the PPP and PPPoE support API
included in the NDK, and how to interface to a serial device.

Appendix D: Hardware Adaptation Layer (HAL) describes the operation of the HAL, and the HAL
API functions.

Appendix E: Web Programming with the HTTP Server describes how to get information from an
embedded network device through the webserver.

Appendix F: IP Version 6 (IPv6) Stack API describes the APIs and data structures exposed by the
IPv6 stack.

Appendix G: Legacy Configuration Manager API describes the legacy Configuration Manager API.
Appendix H: Revision History describes the changes to this document since the previous release.

SPRU524|I-May 2001 —-Revised July 2014 Read This First 9
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

Notational Conventions www.ti.com

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.

* In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in
plain face within parentheses. Portions of a syntax that are in bold should be entered as shown;

portions of a syntax that are within parentheses describe the type of information that should be
entered.

* Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation From Texas Instruments

Additional information about the NDK can be found in SPRU523 (T Network Developer's Kit (NDK) User's
Guide.) and the NDK category of the TI Embedded Processors Wiki. If you have questions, you can ask
them on the BIOS forum in Tl's E2E community.

Information about SYS/BIOS, which is used in NDK applications, can be found in the SPRUEXS3 (Tl
SYS/BIOS Real-time Operating System User's Guide) and the SYS/BIOS main page of the TI Embedded
Processors Wiki.

The following documents describe Cortex™-A8 and ARM9 devices and related support tools. Many of
these documents can be found on the Internet at http://www.ti.com.

SPNU151— ARM Optimizing C/C++ Compiler User's Guide

SPNU118— ARM Assembly Language Tools User's Guide
SPRUH73— AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual
Cortex-A8 wiki page—on the TI Embedded Processors Wiki

ARM9 wiki page—on Ti's Embedded Processors Wiki

Sitara ARM Microprocessors forum—in Tl's E2E Community

The following documents describe the TMS320C6x™ devices and related support tools. To obtain a copy
of any of these Tl documents, call the Texas Instruments Literature Response Center at (800) 477-8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide.

SPRU190 — TMS320C6000 DSP Peripherals Overview Reference Guide.
SPRU197 — TMS320C6000 Technical Brief.
SPRU198 — TMS320C6000 Programmer's Guide

SPRU509 — TMS320C6000 Code Composer Studio ™Development Tools v3.3 Getting Started
Guide

SPRUFP2 — TMS320C6000 Network Developer's Kit (NDK) Support Package Ethernet Driver Design
Guide.

Code Composer Studio, Cortex, TMS320C6x are trademarks of Texas Instruments.
ARM is a registered trademark of Texas Instruments.

10 Read This First SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/support/embedded/bios/f/355.aspx
http://www.ti.com/lit/pdf/spruex3
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.ti.com
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/lit/pdf/spnu118
http://www.ti.com/lit/pdf/spruh73
http://processors.wiki.ti.com/index.php/Cortex-A8
http://processors.wiki.ti.com/index.php/ARM9
http://e2e.ti.com/support/dsp/sitara_arm174_microprocessors/default.aspx
http://www.ti.com
http://www.ti.com/lit/pdf/spru189
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru197
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru509
http://www.ti.com/lit/pdf/SPRUFP2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

Chapter 1
I ’{‘E)S(’?IEUMENTS SPRU5241-May 2001—-Revised July 2014

Introduction

This chapter serves as an introduction to the programming API reference for the NDK software.

Topic Page
1.1 What ThiS DOCUMENT COVEIS uuuiuiuiitininiueuietenissnseetasssansesaeatanssseeaeasanansnsnenes 12
SPRU524I-May 2001—Revised July 2014 Introduction 11

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
What This Document Covers www.ti.com
1.1 What This Document Covers
This Reference Guide for the NDK is mainly a programming API reference guide. It is intended to aid in
the development of network applications and describes the various API functions provided by the stack
libraries.
Although this Programmer's Reference Guide will be the central reference document used when
programming the stack, you should first see the Tl Network Developer's Kit (NDK) User's Guide
(SPRU523) to familiarize yourself with the stack libraries and with using the stack with the SYS/BIOS and
Code Composer Studio™ (CCStudio) development tools.
1.1.1 Supplemental API Information
The following information appears as appendices to this document. These sections contain optional
information that may be useful in understanding the low-level application interface, but is not required
when developing traditional network applications.
* Appendix A Internal Stack Functions
The stack library internal function specification describes a subset of the low-level programming
interface to the stack. These functions allow the application writer to make use of kernel level function
APIs. As a general rule, it is not necessary to use this API for application development, although some
of the sample applications included in the NDK make use of these function calls.
* Appendix B Network Address Translation (NAT)
The stack library includes Network Address Translation module. This appendix describes the
operational theory of NAT, and how to use the NAT functions included in the library.
* Appendix C Point-to-Point Protocol (PPP)
The stack library has internal device sections for both traditional Ethernet, and PPP. The PPP module
can act as PPP client, server, or both (assuming multiple interfaces). This appendix describes the
operation of the PPP module, the PPP over Ethernet (PPPoE) module, and how to interface an HDLC
based serial device.
* Appendix D Hardware Adaptation Layer (HAL)
This appendix describes the hardware and operating system interfaces used by the stack. The
information allows application programmers to call device drivers directly when needed. This appendix
does not supply information about porting the HAL to a new platform.
» Appendix E Web Programming with the HTTP Server
This appendix describes how to make use of the HTTP server included in the NDK. The main topics
covered are adding Web content and writing CGI functions. There is also a description of the HTTP
API used by CGI functions, and some CGI example applications.
e Appendix F IPv6 Stack API
This appendix contains the data structure and API definitions exported by the IPv6 stack in the NDK.
All IPv6 socket level APIs are also documented so that the application can use them for
communication over IPv6 networks.
* Appendix G Legacy Configuration Manager API
This appendix contains information about the legacy configuration API. This APl was used by
applications before the XGCONF configuration method was added.
12 Introduction SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

. Chapter 2
I -{IE)S(’?I?UMENTS SPRU5241-May 2001—-Revised July 2014

Operating System Abstraction API

To keep the stack system portable, it was coded to a very compact operating system abstraction. The
stack can execute in any operating environment by porting the functions described here. Most of these
functions will map directly to their native OS counterpart.

If you program to this API, your applications will execute on any system to which this abstraction is ported,
but more importantly, because all the NDK functions are written to this layer, the behavior of the NDK can
be altered by altering the implementation of this layer. This allows the stack to be tuned in how it
interfaces to the native operating system.

Topic Page

2.1 Operating System CoNfigUIAtIONiuieeiieieitieieeer ettt e e eeaea e e aeaeenaans 14

2 - 1= QS 11 o] o Lo S PP 16

P22 T 1= 4 = T] o T =TS U o o 1] P 21

2.4 Memory AllOCatioN SUPPOIT ..uiit ittt ettt s e e et e a e e e eaeaeanaas 24

25 Print and DebUQG SUPPOIT. ..ttt et et e e et e e e n s e e e e e e e n e e e e eenanns 25

2.6 File I/O Support for Embedded SYStEeMScociuieieieiiiiiieiie e een e eaeeenes 26

2.7 Interrupt Management SUPPOIT cuuuuiuiuiuietieiaieeert ettt et st n e e seeaeaeranas 33
SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 13

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

Operating System Configuration www.ti.com

2.1

211

Operating System Configuration

If you are using XGCONF to configure your application, you can configure several aspects of the OS
behavior in the Scheduling tab of the Global NDK module property page. When you build the *.cfg
configuration file, the data structure described in the following section is generated internally and linked
into your application. See the SPRU523 (TI Network Developer's Kit (NDK) User's Guide.) and the
context-sensitive help for details.

If you are not using XGCONF to configure your application, the configuration options that regulate OS
behavior are stored in a data structure. The types of properties defined in the structure are those that
would typically be macros, but using a data structure allows the values to be changed without rebuilding
the libraries. The structure is described here for completeness, but applications should use the
configuration system to make alterations to these values.

Configuration methods are described in Chapter 4.

Configuration Structure

This section describes a data structure that is generated automatically by the XGCONF configuration. If
you are using XGCONF for configuration, you can ignore the structure described here.

The stack internal configuration structure is _oscfg. Any element in this structure may be modified before
the system is booted. System initialization is covered later in this document.

The _oscfg structure is of type OSENVCFG, which is defined as follows:

// Configuration Structure

typedef struct _osenvcfg {
uint DbgPrintLevel; // Debug message print threshold
uint DbgAbortLevel; // Debug message sys abort threshold

int TaskPriLow; // Lowest priority for stack task

int TaskPriNorm; // Normal priority for stack task

int TaskPriHigh; // High priority for stack task

int TaskPriKern; // Kernel-level priority (highest)

int TaskStkLow; // Minimum stack size

int TaskStkNorm; // Normal stack size

int TaskStkHigh; // Stack size for high volume tasks
} OSENVCFG;

The structure entries as defined as follows:

_oscfg.DbgPrintLevel Debug message print threshold

Default Value DBG_INFO

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)

that will be recorded into the debug log. The threshold may be raised. The legal values
for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR, and DBG_None.

_oscfg.DbgAbortLevel Debug message abort threshold

Default Value DBG_ERROR

Description This is the lowest severity level of a system debug message (call to DbgPrintf() function)

that will result in a system shutdown (call to NC_NetStop()). The threshold may be
raised. The legal values for this variable are: DBG_INFO, DBG_WARN, DBG_ERROR,
and DBG_None.

14

Operating System Abstraction API SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru523
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

_oscfg.TaskPriLow — Priority Level for Low Priority Stack Task

_oscfg.TaskPriLow

Default Value

Description

Priority Level for Low Priority Stack Task

3

This is the priority at which low priority stack task threads are set. Setting a thread to a
lower priority than this will not disrupt the system, but no system or service supplied in
this package will attempt it.

_oscfg.TaskPriNorm Priority Level for Normal Priority for Stack Task

Default Value

Description

_oscfg.TaskPriHigh

Default Value

Description

_oscfg.TaskPriKern

Default Value

Description

_oscfg.TaskStkLow

Default Value

Description

5

This is the priority at which most stack task threads are set. Task threads that are
created by the system or services will usually run at this level.

Priority Level for High Priority for Stack Task

7

This is the priority at which high priority stack task threads are set. Setting a thread at a
higher priority than this may disrupt the system and cause unpredictable behavior if the
thread calls any stack related functions. High priority tasks (like interrupts) can execute
at higher priority levels, but should signal lower priority tasks to perform any required
stack functions.

Priority Level of High Priority Kernel Tasks

9

This is the priority that task threads execute at when they are inside the kernel. Setting
tasks to this priority level ensures that they will not be disrupted by another task calling
stack functions. Note that this priority should be 2 higher than _oscfg.TaskPriHigh, to
allow the scheduler thread to occupy a priority in between. The proper method of
entering the kernel is to call lIEnter() and IIExit(). These functions are discussed in the
appendices, as they are not required for applications programming.

Minimum Task Stack Size

3072

This is the stack size used for network task that do very little network processing, or do
not use TCP.

_oscfg.TaskStkNorm Normal Task Stack Size

Default Value

4096

Description This is the stack size used for a network task with an average network bandwidth using
TCP. It is used for the majority of network tasks in the network tools library that use
TCP.

SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 15

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
_oscfg.TaskStkHigh — High Volume Task Stack Size www.ti.com
_oscfg.TaskStkHigh High Volume Task Stack Size
Default Value 5120
Description This is the stack size used to network tasks that require a high network bandwidth using

TCP. It is also used for tasks calling HTTP CGlI functions.

2.2 Task Support

The task object provides a method of manipulating task threads using a generic task handle. Task threads
are executed on a priority based method, with a least-recently-run algorithm used on those with equal
priority. Each task thread has its own private stack.

SYS/BIOS Users Note: Task handles created and used by this abstraction are compatible and
interchangeable with SYS/BIOS Task handles.

2.2.1 Function Overview

The Task Object access functions (in functional order) are as follows:

TaskCreate()
TaskDestroy()
TaskSelf()
TaskExit()
TaskYield()
TaskSleep()
TaskBlock()
TaskSetPri()
TaskGetPri()
TaskSetEnv()
TaskGetEnv()

2.2.2 Task API Functions

Create new task thread

Destroy a task thread

Get handle to current task thread

Exit (terminate) current task thread

Yield to another task thread at the same priority
Block a task thread for a period of time

Block a task thread

Set task thread priority level

Get task thread priority level

Assign one of three private environment handles to task thread
Retrieve one of three private environment handles

TaskBlock Block Task From Execution
Syntax void TaskBlock(HANDLE hTask);
Parameters
hTask Handle to target task
Return Value None.
Description Permanently blocks the specified task from execution.

Calling this function may cause a task switch.

16 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
www.ti.com TaskCreate — Create a Task Thread
TaskCreate Create a Task Thread
Syntax HANDLE TaskCreate(void(*pFun)(), char *Name, int Priority, uint StackSize, UINT32
Argl, UINT32 Arg2, UINT32 Arg3);

Parameters

pFun Pointer to task entry-point function

Name NULL terminated task name (truncated after 11 characters)

Priority Task priority level (0-15)

StackSize Task stack size

Argl Optional task function argument 1

Arg2 Optional task function argument 2

Arg3 Optional task function argument 3

Return Value

Description

Returns a Task Handle on success or NULL on memory failure.

Creates a new task object. If successful, TaskCreate() returns a handle to the newly
created task.

The task name supplied in Name is used for informational purposes only, and does not
need to be unique.

The task priority specified in Priority determines the task thread's priority relative to other
tasks in the system. The priority should not be higher than the configured value for the
NDK's Global.highTaskPriLevel property (the priority for high priority NDK tasks), which
is 7 by default. 0 is the lowest priority and should be reserved for an idle task. If the
specified priority is negative, the task is blocked.

The task stack size specified by StackSize is not examined or adjusted by the create
function. The size should be made compatible with the native environment (a multiple of
4 bytes should be sufficient).

Argl through Arg3 are optional arguments that can be passed to the calling function
(they are always pushed onto the stack, but the task function need not reference them).

There is no limit to the number of tasks that can be installed in the system. The only
possible failure on TaskCreate() is a memory allocation error.

If the priority level of the new task is higher than the priority level of the current task, the
entry-point function pFun is executed immediately (before TaskCreate() returns to the
caller).

Calling this function may cause a task switch.

SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 17
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

TaskDestroy — Destroy a Task Thread

13 TEXAS
INSTRUMENTS

www.ti.com

TaskDestroy
Syntax

Parameters

hTask

Return Value

Description

TaskExit

Syntax
Parameters
Return Value

Description

TaskGetEnv

Syntax

Parameters

hTask
Slot

Return Value

Description

Destroy a Task Thread

void TaskDestroy(HANDLE hTask);

Handle to target task

None.

Terminates execution of the task object specified by the supplied handle hTask, and
frees task object from system memory. Note that memory allocated by the task thread is
not associated with the task thread and must be freed manually.

Exit a Task Thread

void TaskEXxit();
None.
Does not return.

This function exits a task thread. It should always be called immediately before the task
entry-point function is about to return, but it may be called from anywhere.

Get Task Environment Handle

HANDLE TaskGetEnv(HANDLE hTask, int Slot);

Handle to target task
Environment slot to use (1-3)

Private environment handle or NULL.

Returns a private environment handle for the supplied task handle hTask that was
previously stored with the TaskSetEnv() function. The slot specified in Slot specifies the
address (1-3) of the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

SYS/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. You should use the standard SYS/BIOS functions Task_setEnv() and
Task_getEnv() for private environment pointer storage and retrieval.

18 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com

TaskGetPri — Get Task Priority

TaskGetPri

Syntax

Parameters

hTask

Return Value

Description

TaskSelf

Syntax
Parameters
Return Value

Description

TaskSetEnv

Syntax

Parameters

hTask
Slot
hEnv

Return Value

Description

Get Task Priority

int TaskGetPri(HANDLE hTask);

Handle to target task

Task priority level.

Returns the priority of the target task. See TaskSetPri() for more information on priority.

Get the Handle to the Currently Executing Task Thread

HANDLE TaskSelf();
None.
Handle to currently executing thread, or NULL on error.

Returns the task handle of the currently executing task thread. This function is used
mainly in other task object calls where the caller wishes to operate on the current thread,
but does not know the current thread's handle.

If called on an illegal (system) thread, this function returns NULL. Only certain
implementations of the OS even have a system thread, and no user code should ever be
executed on it. A NULL may also result if Task functions are called before the operating
system is initialized.

Set Task Environment Handle

void TaskSetEnv(HANDLE hTask, int Slot, HANDLE hEnv);

Handle to target task
Environment slot to use (1-3)
Private environment handle

None.

Sets and stores a private environment handle for the supplied task handle hTask. This
handle can be later retrieved by TaskGetEnv(). The slot specified in Slot assigns an
address (1-3) to the environment handle. There are actually four slots, but slot 0 is
reserved.

NOTE: This function returns without setting or getting an environment variable if
the "slot" parameter is non-zero. All internal stack functions use slot zero.

SYS/BIOS Users Note: The OS adaptation layer (OS.LIB) implements this function for
slot 0 only. The reserved slot 0 is the only slot required by the NDK. Slots 1 to 3 are not
implemented. Application programmers should use the standard SYS/BIOS functions

Task_setEnv() and Task_getEnv() for private environment pointer storage and retrieval.

SPRU524I-May 2001—Revised July 2014

Operating System Abstraction API 19

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

TaskSetPri — Set Task Priority

13 TEXAS
INSTRUMENTS

www.ti.com

TaskSetPri

Syntax

Parameters

hTask
Priority

Return Value

Description

TaskSleep

Syntax

Parameters

Delay

Return Value

Description

TaskYield

Syntax
Parameters
Return Value

Description

Set Task Priority

int TaskSetPri(HANDLE hTask, int Priority);

Handle to target task
Task priority level

Previous task priority level.

Sets the priority of the target task to the specified value. The priority should not be higher
than the configured value for the NDK's Global.highTaskPriLevel property (the priority for
high priority NDK tasks), which is 7 by default. 0 is the lowest priority and should be
reserved for an idle task. If the specified priority is negative, the task is blocked.

Calling this function may cause a task switch.

Sleep Task for Period of Time

void TaskSleep(UINT32 Delay);

Time (in milliseconds) of sleep

None.

Sleeps the calling task for a period of time as supplied in Delay. The sleep time cannot
be zero.

Calling this function may cause a task switch.

Yield Execution to Another Task Thread

void TaskYield();
None.
None.

This function yields execution to another thread by causing a round-robin task switch
among ready task threads executing at the same priority level.

This function always causes a task switch; however, the original calling task may be the
next to execute.

20 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com Semaphore Support

2.3 Semaphore Support

The semaphore object provides a method of manipulating counting semaphores using a generic handle.
Semaphores can be used for both task synchronization and mutual exclusion.

SYS/BIOS Users Note: Semaphore handles created and used by this abstraction are compatible and
interchangeable with SYS/BIOS Semaphore handles.

2.3.1 Function Overview
The Semaphore Object access functions (in functional order) are as follows:

SemCreate() Create new semaphore

SembDelete() Delete semaphore

SemPend() Wait on semaphore, optionally for a period of time
SemCount() Get the current semaphore count

SemPost() Release semaphore - increment count
SemReset() Reset semaphore and set new count

2.3.2 Semaphore API Functions

SemCreate Create New Semaphore
Syntax HANDLE SemCreate(int Count);
Parameters
Count Initial semaphore count
Return Value Handle to semaphore or NULL on error.
Description Creates a new semaphore object with an initial count.
SemCount Get Current Semaphore Count
Syntax int SemCount(HANDLE hSem);
Parameters
hSem Handle to Semaphore
Return Value Current semaphore count
Description Returns the current count of the semaphore object.
SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 21

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
SemDelete — Delete Semaphore www.ti.com
SemDelete Delete Semaphore
Syntax void SemDelete(HANDLE hSem);
Parameters
hSem Handle to Semaphore

Return Value

Description

SemPend

Syntax

Parameters

hSem
Timeout

Return Value

Description

None.

Deletes the semaphore object and frees related memory.

Any task currently waiting on this semaphore is blocked forever - even if it originally
specified a timeout to SemPend(). With a little care in programming, this will not occur.

Wait for a Semaphore

int SemPend(HANDLE hSem, UINT32 Timeout);

Handle to Semaphore
Maximum time to wait (in milliseconds)

The function returns 1 if the semaphore was obtained, and O if not.

This function waits on a semaphore.

If the semaphore count is greater than 0, the semaphore count is decrement and this
function immediately returns.

If the semaphore count is zero, the task is placed on a waiting list for the semaphore and
blocked. If the semaphore becomes available in the time period specified in Timeout, the
function returns. However, the function returns regardless once the timeout has expired.
A timeout value of 0 always returns without blocking or yielding. A timeout value of
BIOS_WAIT_FOREVER causes the caller to wait on the semaphore without time out.

The waiting list is first in, first out, without regard to priority. Thus, semaphores can be
used to round-robin task threads at different priority levels.

Calling this function may cause a task switch (unless called with Timeout set to 0).

22 Operating System Abstraction API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com

SemPost — Signal a Semaphore

SemPost

Syntax

Parameters

hSem

Return Value

Description

SemReset
Syntax

Parameters

hSem
Count

Return Value

Description

Signal a Semaphore

void SemPost(HANDLE hSem);

Handle to Semaphore

None.

If the semaphore count is greater than 0 (or is equal to 0, but without any pending task
threads), the semaphore count is incremented and this function immediately returns.

If the semaphore count is zero and there are tasks threads pending on it, the count
remains at zero, and the first thread in the pending list is unblocked.

Calling this function may cause a task switch.

Reset Semaphore

void SemReset(HANDLE hSem, int Count);

Handle to Semaphore
Initial semaphore count

None.

This function resets the semaphore, first setting an initial semaphore count, and then
unblocking all tasks that are pending on the semaphore.

This function should be used with care. Tasks that are pending on the semaphore may
exhibit unexpected behavior because all tasks pending on the semaphore will return
from their respective SemPend() calls regardless of requested timeout. The return value
for the respective SemPend() calls will always be correct because one or more tasks
may get the semaphore (depending on the value of Count), but tasks that called
SemPend() without a timeout may assume they have obtained the semaphore without
checking the SemPend() return value.

Calling this function may cause a task switch.

SPRU524I-May 2001—Revised July 2014

Operating System Abstraction API 23

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

Memory Allocation Support

13 TEXAS
INSTRUMENTS

www.ti.com

2.4 Memory Allocation Support

As part of normal stack operation, memory will be allocated and freed on a regular basis. It is therefore
recommended that a memory support system have the ability to allocate and free small memory blocks in
a variety of sizes, without memory fragmentation. The functions described here work on a memory bucket
system of predefined fixed sizes. Although it allocates more memory than requested, when the memory is
released, it can be reused without fragmentation.

2.4.1 Function Overview

The Memory Allocation access functions (in functional order) are as follows:

mmAlloc()
mmFree()
mmBulkAlloc()
mmBulkFree()
mmCopy()
mmZerolnit()

Allocate Small Memory Block

Free mmAlloc() Memory Block
Allocate Unrestricted Memory Block
Free mmBulkAlloc() Memory Block
Copy a Memory Block

Initialize a Memory Block to Zero

2.4.2 Memory Allocation API Functions

mmAlloc

Syntax
Return Value

Description

mmFree

Syntax
Return Value

Description

mmBulkAlloc

Syntax
Return Value

Description

Allocate Memory Block

void *mmAlloc(uint size);
Pointer to allocated memory or NULL on error.

Allocates a memory block of at least size bytes in length. The function should return a
pointer to the new memory block, or NULL if memory is not available. The size of the
allocation cannot be more than 3068 bytes.

Free Memory Block
int mmFree(void *pv);
If a memory tracking error occurs, this function returns 0; otherwise, it returns 1.

Frees a previously allocated memory block by supplying the pointer that mmAlloc()
originally returned.

Allocate Bulk Memory Block

void *mmBulkAlloc(INT32 Size);
Pointer to allocated memory or NULL on error.

Allocates a memory block of at least size bytes in length. The function returns a pointer
to the new memory block, or NULL if memory is not available. The size of the allocation
is not restricted.

24 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

mmBulkFree — Free Bulk Memory Blo

ck

mmBulkFree

Syntax
Return Value

Description

mmCopy

Syntax
Return Value

Description

mmZerolnit

Syntax
Return Value

Description

2.5

Free Bulk Memory Block
void mmBulkFree(void *pv);
None.

Frees a previously allocated memory block by supplying the pointer that mmBulkAlloc()
originally returned.

Copy Memory

void mmCopy(void *pDst, void *pSrc, uint size);
None.

Called to copy size bytes of data memory from the data buffer pSrc to the data buffer
pDst.

Zero Memory
void mmZerolnit(void *pDst, uint size);
None.

Called to initialize size bytes of data memory in the data buffer pDst to NULL.

Print and Debug Support

The OS abstraction includes a family of compact printf() functions that print using a fixed buffer. The size
of the buffer (max printf() length) is defined in the OS abstraction layer. The code to print to the standard
output device is also provided, and this function can be modified to print or log as required.

The stack also provides another form of the printf function called DbgPrintf(). This function prints debug
messages to a global debug log. The severity threshold at which the debug message is recorded can be
adjusted, as well as at what point the error causes a system shutdown.

SYS/BIOS Users Note: Under SYS/BIOS, there is a minor incompatibility between the compact printf()
function provided here and the one supplied in the RTS library. Other than not supporting floating point,
this version of printf() treats long values (e.g., %ld) as 32 bit quantities, not 40 bits. Thus, when using
SYS/BIOS, it is best to avoid the use of %ld.

2.5.1 Standard API Functions
The standard set of printf functions is supported:
int printf(const char *format, ...);
int sprintf(char *s, const char *format, ...);

int vprintf(const char *format, va_list arg);
int vsprintf(char *s, const char *format, va_list arg);

SPRU524I-May 2001—Revised July 2014

Operating System Abstraction API

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

25

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
Print and Debug Support www.ti.com
2.5.2 Debug API Functions
DbgPrintf Print a Debug Message to the Debug Log
Syntax void DbgPrintf(int ErrLevel, char *Format, ?);
Parameters
ErrLevel Severity level of the error
Format Standard printf format string
Return Value None.
Description This function prints a debug message to the global debug log buffer. The log buffer is
defined as follows:
#define LL_DEBUG_LOG_MAX 1024
extern char DebuglLog[LL_DEBUG_LOG_MAX]; // DebugLog Buffer
extern int DebuglLogSize; // Bytes of data currently in DebuglLog
The buffer behaves like one large NULL terminated string. The contents are cleared by
setting DebuglLogSize to 0.
The value of ErrLevel determines if the message is printed and additionally, if the
message results in a system shutdown. Both of these thresholds (printing and shutdown)
are set through the OS configuration. The definition of the severity levels are as follows:
#define DBG_INFO 1
#define DBG_WARN 2
#define DBG_ERROR 3
#define DBG_None 4
2.6 File /O Support for Embedded Systems
The next section of this document discusses the support for stream IO that is built into the stack library.
The support documented in that section is intended to augment the basic functions provided by the native
operating system (in the case where the stack is ported to a new environment).
This section details functionality required by the Network Tools services interfacing with File 10. The
functionality described here is more likely to have a local counterpart. The API described in this section
must be ported to allow the network services that use it to operate.
The API described here was taken from the Unix standard. The names of the functions have been
prefixed with the designation efs_ ,which stands for embedded file system. This was done so that the
functions would not conflict with any existing file system. The EFS API is a very simple RAM based file
system. A couple of new functions are included that allow the creation of RAM files by supplying pointers
to static data buffers. For systems with existing file structures, most of the functions in this APl become
secondary to their standard 10 counterparts.
NOTE: This API is unrelated to the stream API provided for Sockets. If the services that need this
API are not required, then this module can be discarded from the OS abstraction. Currently,
only the HTTP Server service uses this API.
26 Operating System Abstraction API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com File 1/0 Support for Embedded Systems

2.6.1 Function Overview

The following functions are custom to this implementation, but can be ported:

efs_createfile() Create (declare) RAM based file
efs_createfilecb() Create (declare) RAM based file (with callback function)
efs_destroyfile() Destroy RAM based file

efs_getfilesize() Get the length of file data
efs_filecheck() Check the file type and authorization
efs_filesend() Send file contents directly to a socket

efs_loadfunction() Load executable file and return entry-point function

As previously mentioned, most of the API closely matches its standard C counterpart:

efs_fclose() Close file

efs_feof() Check for end of file
efs_fopen() Open file

efs_fread() Read from file

efs_fseek() Set file position

efs_ftell() Get file position

efs_fwrite() Write to file

efs_rewind() Reset file position to start of file

2.6.2 EFS Custom API Functions

efs_createfile Create (declare) a RAM Based File
Syntax void efs_createfile(char *name, INT32 length, UINT8 *pData);
Parameters
name Filename (maximum length of EFS_FILENAME_MAX)
length Length of file data
pData Pointer to file data
Return Value None.
Description This function creates an internal record of the RAM based file with the indicated

filename, file length, and data pointer. The file data is not copied, so the buffer must be
statically allocated. The filename is copied, so it does not need to be static.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 27

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

efs_createfilecb — Create (declare) a RAM Based File with Callback

13 TEXAS
INSTRUMENTS

www.ti.com

efs_createfilech

Syntax

Parameters

name
length
pData
pcbFreeFun
FreeArg

Return Value

Description

efs_destroyfile

Syntax

Parameters

name

Return Value

Description

Create (declare) a RAM Based File with Callback

void efs_createfilecb(char *name, INT32 length, UINT8 *pData, EFSFUN pcbFreeFun,
UINT32 FreeArg);

Filename (maximum length of EFS_FILENAME_MAX)
Length of file data
Pointer to file data
Pointer to file data
Pointer to file data

None.

This is identical to efs_createfile(), except that is takes two additional arguments, a
pointer to a file free function, and a 32 bit argument. It is designed to be used in system
where the memory used for the file is allocated, and not static.

The EFS file system tracks the numbers of references to a particular file. When the
efs_destroyfile() function is called to destroy a file, the file is marked so that it can no
longer be opened, but open handles to the file remain valid until closed by their
respective application. The free function callback calls back to the file creator when the
last file handle to the file has been closed, allowing the creator to safely reclaim any
memory associated with the file. The argument FreeArg is used as a calling parameter
to the callback.

Destroy (remove declaration from) a RAM Based File

void efs_destroyfile(char *name);

Filename (maximum length of EFS_FILENAME_MAX)

None.

This function deletes the internal file record associating the filename with the static data
pointer as originally passed to efs_createfile().

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the efs_createfile() function could
easily be altered to use allocated buffers that are later freed when efs_destroyfile() is
called. These create and destroy functions are only called by the sample application
code, and thus the system programmer is free to alter the operation of these functions -
so long as they create files that are compatible with the rest of this API.

28 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com efs_getfilesize — Get the Length of a File

efs_getfilesize Get the Length of a File

Syntax INT32 efs_getfilesize(EFS_FILE *stream);

Parameters

stream Pointer to open stream (file)

Return Value File size in bytes.

Description This function returns the length in bytes of the indicated file. The file must already have
been opened via a call to efs_fopen().

efs_filecheck Check the file type and authorization

Syntax int efs_filecheck(char *name, char *user, char *password, int *prealm);

Parameters

name Filename (NULL terminated string)
user Username (NULL terminated string)
password Password (NULL terminated string)
prealm Pointer to receive realm Index (if authentication fails)
Return Value An integer consisting of one or more of the following flags:
EFS_FC_NOTFOUND File not found
EFS_FC_NOTALLOWED File cannot be accessed
EFS_FC_EXECUTE Filename represents a function call (CGl)
EFS_FC_AUTHFAILED File authentication failed (failing realm Index supplied)

Description This function is called by a file server (e.g., HTTP) on a particular filename (provided in
name), to retrieve the file type, and authenticate user access. The user credentials are
supplied in the user and password calling parameters.

The user and password arguments must always be valid pointers, but can be NULL
strings.

When user authentication fails, the Index of the failing authentication realm (1 to 4) is
written to the address supplied in prealm.

SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 29

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
efs_filesend — Send file contents directly to a socket www.ti.com
efs_filesend Send file contents directly to a socket
Syntax size t efs filesend(EFS_FILE *stream, size_t size, SOCKET 5s);

Parameters
stream Pointer to open stream (file)
size Number of bytes to transfer from the file
s Socket onto which to send the file data

Return Value

Description

efs_loadfunction

Syntax

Parameters

name

Return Value

Description

Returns the number of bytes transferred, NULL on an error.

This function is called by a file server (e.g., HTTP) on a particular file stream (provided in
stream), to read data from the file and send it to socket s. Because EFS file systems are
typically RAM based, this custom function can send the file to socket s more efficiently
than an application that has to call efs_read() and then send().

The number of bytes to transfer is given by size. Transfer begins and the current file
pointer location, and the file pointer is advanced by this call.

Load Executable File and Return Entry-point

EFSFUN efs_loadfunction(char *name);

Filename (maximum length of EFS_FILENAME_MAX)

Pointer to executable function.

This function loads an executable file and returns a pointer to the entry-point function.
The type EFSFUN is declared as:

typedef void (*EFSFUN)Q);

The application is really free to treat this function in whatever manner is required. This
executable file is created with a call to efs_createfile() where the pData parameter points
to a function that is already loaded in memory. This allows the HTTP server to call
services contained in CGl files.

A static buffer based system is more efficient for embedded systems because the data
must already be present in RAM or ROM. However, the HTTP can be made to work with
physical CGl files by porting this function to load CGl.

30 Operating System Abstraction API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com

File 1/0 Support for Embedded Systems

2.6.3 EFS Standard API Functions

efs_fclose

Syntax

Parameters

stream

Return Value

Description

efs_feof

Syntax

Parameters

stream

Return Value

Description

efs_fopen

Syntax

Parameters

name
mode

Return Value

Description

Close File

int efs_fclose(EFS_FILE *stream);

Pointer to open stream (file)

Returns EOF if any errors occurred, and zero otherwise.

This function performs a logical close on an open file. It is functionally equivalent to
fclose().

Test for End of File

int efs_feof(EFS_FILE *stream);

Pointer to open stream (file)

Returns non-zero if EOF has been reached, and zero otherwise.

This function tests to see is the file position has reached the end of the file. It is
functionally equivalent to feof().

Open File

EFS_FILE *efs_fopen(char *name, char *mode);

Name of file to open
Desired mode of open file

Returns a stream pointer or NULL on error.

This function performs a logical open on the named file and returns a stream or NULL if

the attempt fails. It is functionally equivalent to fopen().

The mode parameter determines the mode for which the file is opened. In the embedded

file system version of this function, the list of supported modes is quite simple:
rb - open binary file for reading
The flags are still passed through to ensure compatibility with a full file system.

SPRU524I-May 2001—Revised July 2014

Operating System Abstraction API

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

31

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
efs_fread — Read from a File www.ti.com
efs_fread Read from a File
Syntax size t efs_fread(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Parameters
ptr Pointer to data buffer to receive data
size Size in bytes of a read object
nobj Number of objects to read
stream Pointer to open stream (file)

Return Value

Description

efs_fseek

Syntax

Parameters

stream
offset
origin

Return Value

Description

efs_ftell

Syntax

Parameters

stream

Return Value

Returns the number of objects read.

This function reads from the indicated stream in the array ptr at most nobj objects of a
length specified by size. It returns the number of objects read; this may be less than the
number of objects requested. It is functionally equivalent to f read().

efs_feof() can be used to detect end of file.

Set File Position

INT32 efs_fseek(EFS_FILE *stream, INT32 offset, int origin);

Pointer to open stream (file)
Offset of desired new position
Base reference point for offset

Returns non-zero on error.

This function sets the file position of the indicated stream to that specified by offset from
a base reference point specified by origin. It is functionally equivalent to fseek().

The origin parameter can be set to one of the following:
 EFS_SEEK_SET - Position by offset from the beginning of the file
» EFS_SEEK_CUR - Position by offset from the current position

e EFS_SEEK_END - Position by offset from the end of the file

Get File Position

INT32 efs_ftell(EFS_FILE *stream);

Pointer to open stream (file)

Returns file position or -1 on error.

Description This function returns the current file position of the indicated stream. It is functionally
equivalent to ftell().
32 Operating System Abstraction API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com

efs_fwrite — Write to a File

efs_fwrite
Syntax

Parameters

ptr
size
nobj
stream

Return Value

Description

efs_rewind

Syntax

Parameters

stream

Return Value

Description

Write to a File

size t efs_fwrite(void *ptr, size_t size, size_t nobj, EFS_FILE *stream);

Pointer to data buffer to receive data
Size in bytes of a read object
Number of objects to read

Pointer to open stream (file)

Returns the number of objects written (0).

This function writes to the indicated stream from the array ptr, up to nobj objects of a
length specified by size. It returns the number of objects written; this may be less than
the number of objects requested on an error. It is functionally equivalent to fwrite().

Nothing in the stack package requires write capability, thus this function always returns
zero.

Reset File Position to Start of File

void efs_rewind(EFS_FILE *stream);

Pointer to open stream (file)

None.

This sets the position of the indicated stream to zero, and clears any current error.
(Errors are not tracked in this implementation.)

2.7 Interrupt Management Support

The Interrupt Manager defines the APIs and data structures required to configure and manage interrupts
in a generic way. This wrapper hides the OS specific implementation details of interrupt management by
providing a unified API to do the same.

The NDK interrupt manager implementation provided in NDK uses SYS/BIOS as its underlying OS. It uses
SYS/BIOS Hwi and EventCombiner module APIs in turn to configure the interrupts.

Depending on the system, there could be multiple or just a single system event defined for the peripheral
events. Based on the same, one could register a single interrupt and interrupt service routine (ISR) for
their module’s events or register separate ones for each of the events. If two or more system events are
mapped to the same interrupt number, then they are termed as combined interrupts and are handled
separately by the interrupt manager.

SPRU524I-May 2001—Revised July 2014

Operating System Abstraction API 33

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

Interrupt Management Support

13 TEXAS
INSTRUMENTS

www.ti.com

2.7.1 Configuration Structure

The NDK driver or application that wishes to configure interrupts would need to use the following
"IntSetup” structure to pass the interrupt configuration information to the Interrupt manager module. All the
APIs exported by this module reference this structure to retrieve interrupt configuration info.

/**
* @brief

LA B B I N

*/

The structure describes the interrupt setup object defined by
the interrupt management wrapper in OS Abstraction Layer.

typedef struct _IntSetup

{
/**
* @brief

*
*/
Uint8

/**
* @brief

*
*/
Uint8

/**
* @brief

*

*

*

*/
Uint8

/**
* @brief

*
*/
void

/**

* @brief
*/

void*

/**
* @brief

*
*/
Uint8

} IntSetup;

HWI Object number to use for setting up this
system event. The valid values for this range
between 4 - 15 (both inclusive).

intVectld;

System Event number(s) for which the
interrupts need to be setup. The valid values
for this range between 4 - 127 (both inclusive).

sysEvtId[MAX_NUM_SYSEVENTS];

Number of system events that need to be mapped
to a given interrupt number and be serviced by
a specified Interrupt Service Routine (ISR).
Valid values for this range between 1 - 128.

sysEvtCount;

The callback function to be triggered when the
interrupt occurs, i.e. the ISR. This should not be
set to NULL for a successful interrupt setup.

(*pCal IbackFxn) (void* pCallbackArg);

The arguments that need to be passed to the ISR.
Can be NULL.

pCallbackArg;

Flag to indicate whether to enable/disable the
interrupt by default. This flag is valid only
when setting up combined interrupts, i.e.,
multiple system events mapped to a single
interrupt number.

bEnable;

@details * This structure can be used by a driver/such in setting up
interrupts using the underlying 0OS (BIOS) constructs without
having to know the details of the 0S specific calls. All calls
to the interrupt management wrapper require a handle to

the structure described below.

34 Operating System Abstraction API

Copyright © 2001-2014, Texas Instruments Incorporated

SPRU5241-May 2001—Revised July 2014
Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS

www.ti.com

intVectld — The interrupt number to use for this interrupt.

The structure entries are defined as follows:

intVectld

Description

sysEvtld

Description

sysEvtCount

Description

pCallbackFxn

Description

pCallbackArg

Description

bEnable

Description

The interrupt number to use for this interrupt.

The interrupt number to use for this system event. The range of valid values is
hardware-dependent. For example, for C6000 targets, the intVectld can range from 4-14.

Array of system event numbers that map to the given interrupt vector.

One or more of the 128 system events can be mapped to a single interrupt line in the
system. This array holds all the system events that are mapped to the specified interrupt
vector number. The valid values for the system event numbers that can be specified in
this array are 4 — 127 (both inclusive). The system events 0 -3 are used by the
EventCombiner module in setting up combined interrupts and hence cannot be used by
an application for individual masked interrupts.

Number of system events configured in the sysEvtld array.

Number of system events that are configured in the sysEvtld array and are to be
mapped to the interrupt vector number specified in this structure.

Handle to the ISR that needs to be invoked when this interrupt occurs.

This holds a pointer to the user specified callback function or ISR that needs to be
invoked when the specified interrupts occurs in the system. This should be set to a non
NULL value for a successful interrupt setup.

Arguments that need to be passed back to the ISR.

Any arguments that need to be passed back to the ISR as a part of its context can be
specified here. This can be omitted or set to NULL if no context information needs to be
passed back to ISR when the interrupt occurs.

Flag to enable or disable the interrupt by default.

This flag is valid only while setting up combined interrupts, i.e., one or more system
events mapped to a single SYS/BIOS interrupt number. This indicates whether the
configured interrupt is to be enabled or disabled by default when added to the system.

2.7.2 Function Overview

The interrupt configuration functions exported by the manager are as follows:

Interrupt_add Configure a new interrupt in the system using the underlying OS constructs

(SYS/BIOS).

Remove a previously configured interrupt
Enable the interrupt and make it active
Disable the interrupt in the system

Interrupt_delete
Interrupt_enable
Interrupt_disable

SPRU524I-May 2001—Revised July 2014
Submit Documentation Feedback

Operating System Abstraction API 35

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

Interrupt Management Support

13 TEXAS
INSTRUMENTS

www.ti.com

2.7.3
Interrupt_add

Syntax

Parameters
myIntSetup

Return Value

Description

Interrupt_delete

Syntax

Parameters
myIntSetup

Return Value

Description

Interrupt_enable

Syntax

Parameters

myIntSetup

Return Value

Description

Interrupt Manager API Overview

Configure a new interrupt in the system.

Uint32 Interrupt_add(IntSetup* myIntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 0 on success and 1 on error.

This function validates the interrupt configuration parameters passed by the
application/driver and sets up the interrupt using the underlying OS interrupt
management constructs (SYS/BIOS’s Hwi and EventCombiner module constructs here).
It enables/disables the interrupt too based on the input for combined interrupts.

Removes a previously configured interrupt.

Uint32 Interrupt_delete(IntSetup* myIntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Always returns 0.

This function can be used to implement the logic required to remove any previously
configured interrupts in the system. SYS/BIOS does not define any constructs to remove
interrupts. Hence, this function is currently a placeholder and does nothing. It always
returns success.

Enables the interrupt (applicable to only combined interrupts).

int32 Interrupt_enable(IntSetup* mylntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 1 on error and O on success.

This function validates the input parameters and enables the interrupts using SYS/BIOS
APIs. This function is only applicable for combined interrupts, i.e., interrupts where
multiple system events are mapped to a single interrupt.

36 Operating System Abstraction API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

Interrupt_disable — Disables the interrupt (applicable to only combined interrupts).

Interrupt_disable

Syntax

Parameters

myIntSetup

Return Value

Description

Disables the interrupt (applicable to only combined interrupts).

Uint32 Interrupt_disable(IntSetup* mylntSetup);

Handle to the interrupt setup structure configured by the driver or application.

Returns 1 on error and 0 on success.

This function validates the input parameters and disables the interrupts using SYS/BIOS
APIs. it is only applicable for combined interrupts, i.e., interrupts where multiple system
events are mapped to a single interrupt.

For an illustration of the interrupt configuration using Interrupt Manager APIs for any C64x+ devices, see
the sample Ethernet driver code packaged in the NDK Support Package (NSP) for your target. The
Embedded Software Download Page provides links to download the NSP. The Embedded Software
Download Page provides a link to download the NSP for the OMAP-L138. Other NSPs are provided as
part of the SDK for that development platform.

SPRU524I-May 2001—Revised July 2014 Operating System Abstraction API 37
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

. Chapter 3
I -{IE)S(’?SUMENTS SPRU5241-May 2001—-Revised July 2014

Sockets and Stream 10 API

This chapter describes the socket and file API functions.

Topic Page
3.1 File Descriptor ENVIFONMENT . ..ottt e e et e e e e e e e e eaaneeeeaeanns 39
3.2 File Descriptor Programming INterfaceouviiiiiiiiiiiiiiie et e e aes 40
3.3 Sockets Programming INterfacCecuiiiiieiiiiiiii et e e e aaaeas 49
3.4 BSD Sockets Compatibility APl LAYueiinieieieeeeieeneaeee e eeeneaeeseeaeeneneneenenes 69
3.5 Raw Ethernet Sockets Programming INterfacecooveiiieiiniiiiiiiiieeeieeeaeene 89
3.6 Full Duplex Pipes Programming INterfacecoveiiiiiiiiiiiiiieiirneeenanenenene 96
3.7 Internet Group Management ProtoCol (IGMP)........couiuiiiiiiiiiiiiiieieeiee e eeee e 97
38 Sockets and Stream 10 API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I

TEXAS

INSTRUMENTS

www.ti.com File Descriptor Environment

3.1

3.11

3.1.2

File Descriptor Environment

In most embedded operating system environments, support for file descriptors varies greatly. In most
cases, only the bare minimum functionality is provided, and trimmed down support functions are provided
using the common reserved names (read(), write(), close(), etc.).

As this stack supports the standard sockets interface functions, and these functions require file descriptor
support, the stack provides its own small file system. This section describes the basic mechanics of the
file system.

Organization

The basic building block of the stack code internally is an object handle. Internally to the stack, both
sockets and pipes are addressed by object handles. However, at the application level, sockets and pipes
are treated as file descriptors. The file descriptor contains additional state information allowing tasks to be
blocked and unblocked based on socket activity.

The stack API supports the use of file descriptors by adding a file descriptor layer of abstraction to the
native operating environment. This layer implements the standard sockets and file 10 functions. The stack
works by associating a file descriptor session with each caller's thread (or in this terminology, task). In this
system, each task has its own file descriptor session. The file descriptor session is used when the task
needs to block pending network activity.

Note that although file descriptors can be used in classic functions like select(), in this implementation,
they are still handles, not integers. For compatibility, network applications must use the NDK header files,
and use INVALID_SOCKET for an error condition (not -1), and refrain from comparing sockets as <0 when
checking for validity.

Initializing the File System Environment

To use the file system and socket functions provided by the stack, a task must first allocate a file
descriptor table (called a file descriptor session). This is accomplished at the application layer by calling
the file descriptor function fdOpenSession().

When the task is finished using the file descriptor API, or when it is about to terminate, the function
fdCloseSession() is called.

3.1.2.1 When to Initialize the File Descriptor Environment

For correct stack operation, a task thread must open a file descriptor session before calling any file
descriptor related functions, and then close it when it is done.

The simplest way to handle the session is for the task to open a file session when it starts, and close the
session when it completes. For example:

Socket Task:

void socket_task(int IPAddr, int TcpPort)

{
SOCKET s;

// Open the file session
fdOpenSession(TaskSelf());

< socket application code >

// Close the file session
fdCloseSession(TaskSelf());

}

A second option is for the task that creates the socket task thread to open the file descriptor session for
the child thread. Note that the parent task must guarantee that the child task’s file session is open before
the child task executes. This is done via task priority or semaphore, but can complicate task creation.
Therefore, it is not the ideal approach.

SPRU524|I-May 2001 —-Revised July 2014 Sockets and Stream 10 API 39
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

File Descriptor Programming Interface www.ti.com

A third, more common, option is to allow a child task to open its own file session, but allow the parent task
to monitor its children and eventually destroy them. Here, the parent task must close the file session of the
child task threads it destroys. The child task then blocks when finished instead of terminating its own
thread. The following example illustrates this concept:

Child Socket Task:

void child_socket_task(int IPAddr, int TcpPort)

{
SOCKET s;

// Open the file session
fdOpenSession(TaskSelf());

< socket application code >

// We are done, but our parent thread will close
// our fTile session and destroy this task, so here
// we just block.

TaskBlock(TaskSelf());

}
The parent task functions would look as follows:

Parent Task Functions:
void create_child_task()

{
// Create System Tasks
// Create a child task
hChildTask = TaskCreate(&child_socket_task, ?);
b
void destroy_child_task()
{
// First close the child"s file session
// (This will close all open files)
fdSessionClose(hChildTask);
// Then destroy the task
TaskDestroy(hChildTask);
3

3.1.2.2 Auto-Initializing the File Descriptor Environment

3.2

The calls to fdOpenSession and fdCloseSession can be configured to be called automatically. This is
achieved by setting the following configuration parameter in XGCONF:

var Global = xdc.useModule("ti.ndk.config.-Global._xdc*);
Global .autoOpenCloseFD = true;

Setting this parameter to true causes calls to fdOpenSession and fdCloseSession to be made
automatically in the SYS/BIOS Task module's create hook function and exit hook function, respectively.

Note that the Global.autoOpenCloseFD parameter is only supported for dynamically-created Tasks
created from within a Task context (that is, from within another running Task function). Tasks created
statically in the configuration or dynamically in main() or a Hwi or Swi thread do not have support this
feature.

File Descriptor Programming Interface

The purpose of supporting a file system is to support the sockets API. Unfortunately, the sockets API is
not a complete 10 API, as it was originally designed to integrate into the Unix file system. Thus, several
file descriptor functions that are important for application programming are not really socket calls at all.
The stack library supports a handful of what are normally considered file functions, so that sockets
applications can be programmed in a more traditional sense. So that these functions will not conflict with
any other file functions in the system, their names have been altered slightly from the standard definitions.

40

Sockets and Stream 10 API SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

File Descriptor Programming Interface

3.2.1 Function Overview

The stream IO object can take two forms. In the vast majority of cases, it will be in the form of a local file
descriptor. The following functions can operate on file descriptors:

fdOpenSession()
fdCloseSession()
fdClose()
fdError()

fdPoll()
fdSelect()
fdSelectAbort()
fdStatus()
fdShare()

Open file descriptor support session

Close file descriptor support session

Flush stream and close file descriptor (same as standard close())
Return last error value (same as standard error)

Wait on a list of file descriptor events (same as standard poll())

Wait on one or more file events (same as standard select())

Aborts calls to fdSelect() and fdPoll() with forced timeout condition
Get the current status of a file descriptor (similar to ioctl/FIONREAD)
Add a reference count to a file descriptor

The fdSelect() function uses file descriptor sets to specify which file descriptors are being checked for
activity and which have activity detected. There is a small set of MACRO functions for manipulating file
descriptor sets. These include the following:

FD_SET()
FD_CLR()
FD_ISSET()
FD_COPY()
FD_ZERO()

Add a file descriptor to a file descriptor set

Remove a file descriptor from a file descriptor set

Test to see if a file descriptor is included in a file descriptor set
Copy a file descriptor set

Clear (initialize) a file descriptor set

3.2.2 File Descriptor API Functions

fdOpenSession

Syntax

Parameters

hTask

Return Value

Open File Descriptor Session

int fdOpenSession(HANDLE hTask);

Task Thread Handle

1 on success or 0 on error. An error return indicates that a session is already open for

the specified task, or that a memory allocation error has occurred.

Description This function opens a file descriptor session on a task thread so that the task can begin

using file descriptor and other stream 10 functions.

A task thread normally calls fdOpenSession() when it is first created, and

fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 41

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

fdCloseSession — Close File Descriptor Session

13 TEXAS
INSTRUMENTS

www.ti.com

fdCloseSession

Syntax

Parameters

hTask

Return Value

Description

fdClose

Syntax

Parameters

fd

Return Value

EBADF

ENOTSOCK

EINVAL

Description

fdError

Syntax

Description

Close File Descriptor Session

void fdCloseSession(HANDLE hTask);

Task Thread Handle

None.

This function closes a file descriptor session that was previously opened with
fdOpenSession(). When called, any remaining open file descriptors are closed.

A task thread normally calls fdOpenSession() when it is first created, and
fdCloseSession() before it exits. Use of these functions was described in more detail in
the previous section.

Close File Descriptor

int fdClose(HANDLE fd);

File Descriptor to close (compatible with type SOCKET)

0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (error is also equal to this function).

The file descriptor (socket) is invalid.
The descriptor does not reference a socket.
listen() has not been called on the socket or name arguments are invalid.

This function closes the indicated file descriptor.

Get the Last File Error

int fdError();

This function returns the last file error that occurred on the current task. In the
SERRNO.H header file, error is equal to this function.

NOTE: The error code returned via fdError() is stored in the file descriptor
session associated with a task. If a task calls a file or socket function
before it opens a file descriptor session, an error condition results.
However, no error code can be stored for retrieval by fdError() because
the file descriptor session does not exist to hold it.

42 Sockets and Stream 10 API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

fdPoll — Wait on a List of File Descriptor Events

fdPoll

Syntax

Parameters

items
itemcnt
timeout

Return Value

Description

Wait on a List of File Descriptor Events

int fdPoll(FDPOLLITEM items, uint itemcnt, INT32 timeout);

Pointer to a list of descriptor events of type FDPOLLITEM
Number of entries in items list
Function timeout in milliseconds

Returns the number of file descriptors in the items list for which the eventsDetected field
iS non-zero.

Returns SOCKET_ERROR if the caller has not opened a file descriptor session (with
fdOpenSession()).

Returns zero (0) under any of the following conditions:

» No detected flags and time out has occurred

* No detected flags and a fdSelectAbort() was issued

* No detected flags and an internal resource allocation failed

The fdPoll() function is a more efficient alternative to the fdSelect() function. It polls the
supplied list of sockets, with a timeout specified in milliseconds (or POLLINFTIM for
infinite timeout). It has the advantage over fdSelect() because the original list of file
descriptors (or sockets) to be examined is not overwritten by the results, and thus can be
used multiple times without reconstruction.

The list of file descriptors to check is provided in the items array. The array is of type
FDPOLLITEM, which is defined as follows:
typedef struct _fdpollitem {
HANDLE fd;
UINT16 eventsRequested;
UINT16 eventsDetected;
} FDPOLLITEM;

The FDPOLLITEM entry contains a file descriptor (or socket) to check, a set of flags for
requested events that is initialized by the application, and a set of resulting flags for a
detected event that is initialized by the fdPoll() function.

The entry fd is the file descriptor to check. If fd is set to INVALID_SOCKET, or the
eventsRequested field is NULL, the item entry is ignored. However, the eventsDetected
field is still reset to zero.

The same file descriptor should not appear twice in the list, instead the event flags
should be combined on a single entry. (Duplicate descriptors will not cause an error, but
will increase system load.)

Valid flags for eventsRequested are one or more of the following:

e POLLIN - Socket readable (or read error pending)

e POLLOUT - Socket writable (or send error pending)

* POLLPRI - Socket OOB readable (or error pending)

* POLLNVAL - Socket or request type invalid

Valid flags for eventsDetected are the same as above, where all detected conditions are

indicated. (Note that POLLNVAL can be set whether or not it was requested in
eventsRequested.)

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 43
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
fdSelect — Wait on one or multiple File Events www.ti.com
fdSelect Wait on one or multiple File Events
Syntax int fdSelect(int maxfd, fd_set *readset, fd_set *writeset, fd_set *exceptset, struct timeval

*timeout);
Parameters
maxfd Ignored
readset Set of file descriptors to check for reading
writeset Set of file descriptors to check for writing
exceptset Set of file descriptors to check for exceptional conditions (OOB data)
timeout Pointer to timeval structure of time to wait (or NULL)

Return Value

EBADF
ENOMEM
EINVAL

Description

Returns a positive count of ready descriptors (combined from all three possible sets), 0
on timeout, or -1 on error. When an error occurs, the error type can be obtained by
calling fdError().

The file descriptor (socket) is invalid.
Memory allocation error.
listen() has not been called on the socket or name arguments are invalid.

This function allows the task to instruct the stack to wait for any one of multiple events to
occur and to wake up the process only when one of more of these events occurs or
when a specified amount of time has passed.

The definition of the timeval structure is:

struct timeval {
INT32 tv_sec;
INT32 tv_usec;

¥

Passing in a NULL pointer for timeout specifies an infinite wait period. Passing a valid
pointer to a timeval structure with both tv_sec and tv_usec set to zero specifies that the
function should not block.

NOTE: This function is less efficient than fpPoll(). In fact, the fdSelect() function
calls fdPoll() after rearranging the descriptor sets into a fdPoll() descriptor
list.

44 Sockets and Stream 10 API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

fdSelectAbort — Terminate a Previous Call to fdSelect() or fdPoll()

fdSelectAbort

Syntax

Parameters

hTask

Return Value

Description

Terminate a Previous Call to fdSelect() or fdPoll()

void fdSelectAbort(HANDLE hTask);

Handle to the task thread that is blocked in fdSelect() or fdPoll()

None.

This function aborts a call to fdSelect() or fdPoll() on the specified target thread by
simulating a timeout condition (even when no timeout was originally specified). It can be
used to wake a thread using a different method than socket or pipe activity. It is useful in
callback functions where the handle to the target task thread is known, but where socket
calls cannot be easily used.

The return value from the fdSelect() or fdPoll() function called on the target thread is still
valid. In other words, if there is pending file descriptor activity, it will still be returned to
the caller. However, if the target task thread is blocked in fdSelect() or fdPoll() at the time
of the call, the most likely return value is zero for no activity.

If the target thread is not currently pending on a call to fdSelect() or fdPoll(), any
subsequent call will be affected. Thus, the target thread is guaranteed to see the abort
(although it may be accompanied by actual socket activity). So there is no race condition
on calling fdSelectAbort() immediately prior to the target task thread calling fdSelect() or
fdPoll().

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 45
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
fdStatus — Get the Current Status of a File Descriptor www.ti.com
fdStatus Get the Current Status of a File Descriptor
Syntax int fdStatus(HANDLE fd, int request, int *results);

Parameters
fd File descriptor (socket or pipe) to check
request Status request type.
hTask Pointer to where status results are written

Return Value

Description

0 on success or -1 on error. When an error occurs, the error type can be obtained by
calling fdError() (errno is also equal to this function).

This function reads current status information about the file descriptor. The descriptor
can be either a socket or a pipe object. The following describes the value written to
results for the various request types and descriptor types:

e request = FDSTATUS_TYPE;

The results pointer is written with the file descriptor type. It will be one of the following
values:

— FDSTATUS_TYPE_SOCKET - The file descriptor is a socket.
— FDSTATUS_TYPE_PIPE - The file descriptor is a pipe.
* request = FDSTATUS_RECV;
On listening sockets, the results pointer is written with;
— -1 - There is an error pending on the socket.
— 0 - There are no connections ready to be accepted.
— 1-There is at least one connection ready to be accepted.
On data sockets, the results pointer is written with:
— -1 - There is an error pending, or a call to recv() will result in an error.

NOTE: On a TCP socket, this return value can also indicate that the peer
connection has been closed and all available data has been read. In
this case, a subsequent call to recv() will return NULL, not error.

— <0to n> - The number of bytes that can be read using recv() without blocking.
e request = FDSTATUS_SEND;
On listening sockets, the results pointer is written with:
— -1 - Alistening socket can never be written.
On TCP (non-ATOMIC) data sockets, the results pointer is written with:
— -1- There is an error pending, or a call to send() will result in an error.
— <0to n> - The number of bytes that can be written using send() without blocking.
On UDP/RAW (ATOMIC) data sockets, the results pointer is written with:
— -1 - There is an error pending, or a call to send() will result in an error.

— <0 to n> - The maximum number of bytes that can be written using a single
send() call.

46 Sockets and Stream 10 API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

fdShare — Add a Reference Count to a File Descriptor

fdShare

Syntax

Parameters

fd

Return Value

Description

Add a Reference Count to a File Descriptor

int fdShare(HANDLE fd);

File descriptor to share (compatible with type SOCKET)

Returns zero on success or -1 on error.

This is an optional function for applications that use descriptor sharing. It increments a
reference count on the target descriptor, which is then decremented when the
application calls fdClose(). It allows the descriptor to be shared among multiple tasks,
each calling fdClose() when they are done, and the file descriptor is only closed by the
final call. (Note that file descriptors are created with a reference call of 1, meaning that
the first call to fdClose() will close the descriptor.)

For example, fdShare() is useful in a case where Task A opens a session and calls
recv() in a loop on a socket. Task B has a loop that calls send() on the same socket. The
call to send() from Task B will fail and then fdError() will return -1 if you do not call
fdOpenSession() and then fdShare() from the second Task after the first Task has
opened the socket.

For an example that calls fdShare(), see the contest.c file in the
<NDK_INSTALL_DIR>\packages\ti\ndk\tools\console directory.

3.2.3 File Descriptor Set (fd_set) Macros

FD_SET

Syntax

Parameters

fd
pFdSet

Return Value

Add a File Descriptor to a File Descriptor Set

void FD_SET(HANDLE fd, fd_set *pFdSet);
File descriptor to add (compatible with type SOCKET)
Pointer to fd_set data type

Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

Description This function adds a file descriptor to a file descriptor set, typically before using the set in
a call to fdSelect(). Note that after declaring a fd_set data type, it should be initialized
using FD_ZERO() before attempting to set individual file descriptors.

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 47

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

FD_CLR — Remove a File Descriptor From a File Descriptor Set

13 TEXAS
INSTRUMENTS

www.ti.com

FD_CLR

Syntax

Parameters

fd
pFdSet

Return Value

Description

FD_ISSET

Syntax

Parameters

fd
pFdSet

Return Value

Description

FD_COPY

Syntax

Parameters

pFdSetSRC
pFdSetDST

Return Value

Description

Remove a File Descriptor From a File Descriptor Set

void FD_CLR(HANDLE fd, fd_set *pFdSet);

File descriptor to remove
Pointer to fd_set data type

Should be treated as a void function. The true return value is dependent on the
implementation of the macro.

This function removes a file descriptor from a file descriptor set, typically after the file
descriptor has been processed in a loop that continuously checks a file descriptor set.

Test to See if a File Descriptor is Included in a File Descriptor Set

int FD_ISSET(HANDLE fd, fd_set *pFdSet);

File descriptor to check (compatible with type SOCKET)
Pointer to fd_set data type
Returns an int value that should be treated as a TRUE/FALSE condition.

This function returns TRUE if the supplied file descriptor is contained in the indicated file
descriptor set. This function is typically called after a call to fdSelect() to determine on
what file descriptors select has detected activity.

Copy a File Descriptor Set

void FD_COPY(fd_set *pFdSetSRC, fd_set *pFdSetDST);

Pointer to fd_set to copy
Pointer to fd_set to write copied data

None.

This function is called to make a copy of a file descriptor set. This is typically done if a
set needs to be modified, but this original information needs to be maintained.

48 Sockets and Stream 10 API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

I3 TEXAS
INSTRUMENTS

www.ti.com FD_ZERO — Clear (Initialize) a File Descriptor Set
FD_ZERO Clear (Initialize) a File Descriptor Set
Syntax void FD_ZERO(fd_set *pFdSet);
Parameters

pFdSet Pointer to fd_set to initialize
Return Value None.
Description This function is called to clear all bits in a file descriptor set. This should be the first call

3.3

3.3.1

made on a newly declared fd_set variable.

Sockets Programming Interface

The socket function API supported by the stack library is not consistent with the standard Berkeley
sockets API. For the BSD-compliant socket interface, see Section 3.4.

This section only covers the IPv4 (AF_INET) family Sockets. For details on IPv6 sockets, see Appendix F
of this document. Similarly, for details on Raw Ethernet Sockets, see Section A.17 of this document.

Two new types are defined for the socket function declarations:

typedef struct sockaddr SA;
typedef struct sockaddr *PSA;

Enhanced No-Copy Socket Operation

Any performance of any data stream operation suffers when data copies are performed. Although the
stack software is designed to use a minimum number of data copies, memory efficiency and API
compatibility sometimes require the use of data copy operations.

By default, neither UDP nor RAW sockets use send or receive buffers. However, the sockets API
functions recv() and recvfrom() require a data buffer copy because of how the calling parameters to the
functions are defined. In the stack library, two alternative functions (recvnc()and recvncfrom()) are
provided to allow an application to get received data buffers directly without a copy operation. When the
application is finished with these buffers, it returns them to the system via a call to recvncfree().

By default, TCP uses both a send and receive buffer. The send buffer is used because the TCP protocol
can require reshaping or retransmission of data due to window sizes, lost packets, etc. On receive, the
standard TCP socket also has a receive buffer. This coalesces TCP data received from packet buffers.
Coalescing data is important for protocols that transmit data in very small bursts (like a telnet session).

For TCP applications that get data in large bursts (and tend not to use flags like MSG_WAITALL on
receive), the receive buffer can be eliminated by specifying an alternate TCP stream type of
SOCK_STREAMNC (see socket()). Without the receive buffer, there is at least one less data copy
because TCP will queue up the actual network packets containing receive data instead of copying it into a
receive buffer.

Care needs to be taken when eliminating the TCP receive buffer. Here large amounts of packet buffers
can be tied up for a small amount of data. Also, because packet buffers come from the HAL, there may be
a limited supply available. If the MSG_WAITALL flag is used on a recv() or recvfrom() call, it is possible for
all packet buffers to be consumed before the specified amount of payload data is received. This would
cause a deadlock situation if no socket timeout is specified.

Although TCP sockets that use the SOCK_STREAMNC stream type are 100% compatible with the
standard TCP socket type, they can also be used with the recvnc() and recvncfrom() functions that UDP
and RAW sockets use to eliminate the final data copy from the stack to the sockets application. Using the
no copy functions with SOCK_STREAMNC eliminates two data copies from the standard TCP socket.
Note that when recvnc() and recvncfrom() are used with TCP, out of band data is not supported. If the
SO_OOBINLINE socket option is set, the out of band data is retained, but the out of band data mark is
discarded. If not using the inline socket option, the out of band data is discarded.

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 49
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

Sockets Programming Interface

TEXAS

INSTRUMENTS

www.ti.com

3.3.2 Function Overview

accept()

bind()
connect()
getpeername()
getsockname()
getsockopt()
listen()

recv()
recvfrom()
send()
sendto()
setsockopt()
shutdown()
socket()
socketpair()

recvnc()
recvncfree()
recvncfrom()

The standard socket access functions are as follows:

Accept a connection on a socket

Bind a name to a socket

Initiate a connection on a socket

Return name (address) of connected peer
Return the local name (address) of the socket
Get the value of a socket option

Listen for connection requests on a socket
Receive data from a socket

Receive data from a socket with the senders name (address)

Send data to a connected socket

Send data to a specified destination on an unconnected socket

Set the value of a socket option
Close one half of a socket connection
Create a socket

Create socket pair (redundant; see Section 3.6 , Full Duplex Pipes

Programming Interface

The enhanced socket functions are as follows:

Receive no-copy data from a socket

Free buffer obtained from recvnc() or recvncfrom()

Receive no-copy data from a socket with the senders name (address)

50

Sockets and Stream 10 API

SPRU5241-May 2001—Revised July 2014

Copyright © 2001-2014, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com Sockets Programming Interface

3.3.3 Sockets API Functions

accept Accept a Connection on a Socket
Syntax SOCKET accept(SOCKET s, PSA pName, int *plen);
Parameters
S Socket
pName Name (address) of connected peer
plen Pointer to size of pName
Return Value If it succeeds, the function returns a non-negative integer that is a descriptor for the

accepted socket. Otherwise, a value of INVALID_SOCKET is returned and the function
fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ECONNABORTED Listening socket has been shut down for read operations.
EMFILE The file descriptor table is full.
ENOMEM Memory allocation error.
ENOTSOCK The descriptor does not reference a socket.
EINVAL listen() has not been called on the socket or name arguments are invalid.
EWOULDBLOCK Socket is marked non-blocking and no connections are ready
Description The argument s is a socket that has been created with the socket() function, bound to an

address with bind(), and is listening for connections after a listen(). The accept() function
extracts the first connection request on the queue of pending connections, creates a new
socket with the same properties of socket s and allocates a new file descriptor for the
socket. If no pending connections are present on the queue, and the socket is not
marked as non-blocking, accept blocks the caller until a connection is present. If the
socket is marked non-blocking and no pending connections are present on the queue,
accept returns an error as described above.

The accepted socket may not be used to accept more connections. The original socket s
remains open.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

This call is used with connection-based socket types, currently with SOCK_STREAM.

It is possible to select (fdSelect()) a socket for the purposes of doing an accept by
selecting it for read.

SPRU524I-May 2001—Revised July 2014 Sockets and Stream 10 API 51

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

bind — Bind a Name (Address) to a Socket

13 TEXAS
INSTRUMENTS

www.ti.com

bind
Syntax

Parameters

S
pName
len

Return Value

EBADF
ENOTSOCK
EINVAL

EADDRNOTAVAIL

EADDRINUSE

Description

connect

Syntax

Parameters

S
pName
len

Return Value

Bind a Name (Address) to a Socket

int bind(SOCKET s, PSA pName, int len);

Socket
Name (address) of desired local address
Size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.

The descriptor does not reference a socket.

Name arguments are invalid.

The specified address is not available from the local machine.
The specified address is already in use.

The bind() function assigns a name to an unnamed socket. When a socket is created
with socket() it exists in a name space (address family) but has no name assigned. The
bind() function requests that name be assigned to the socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired local address.
The len parameter contains the size of pName, which is sizeof(struct sockaddr).

Initiate a Connection on a Socket

int connect(SOCKET s, PSA pName, int len);

Socket
Name (address) of desired peer
Size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local machine.
EALREADY A connection request is already pending on this socket.

EBADF The file descriptor (socket) is invalid.

ECONNREFUSED The attempt to connect was forcefully rejected.
EHOSTUNREACH The host is not reachable.

EINPROGRESS The request was accepted and is pending (non-blocking sockets).
EINVAL Name arguments are invalid.

EISCONN The socket is already connected.

ENOTSOCK The file descriptor does not reference a socket.

ENOTSUPP Socket is in the listening state and cannot be connected.
ETIMEDOUT Connection establishment timed out without establishing a connection.

52 Sockets and Stream 10 API

SPRU5241-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

getpeername — Get Name (Address) of Connected Peer

Description

getpeername

Syntax
Parameters
S

pName
plen

Return Value

EBADF
ENOTSOCK
EINVAL
ENOTCONN

Description

The connect() function establishes a logical (and potentially physical) connection from
the socket specified by s to the foreign name (address) specified by pName.

If sock is of type SOCK_DGRAM, this call specifies the peer address with which the
socket is to be associated; this address is that to which datagrams are to be sent, and
the only address from which datagrams are to be received. If the socket is of type
SOCK_STREAM, the function attempts to make a connection to another socket.

The argument s is a socket that has been created with the socket() function. The
argument pName is a structure of type sockaddr that contains the desired foreign
address. The len parameter contains the size of pName, which is sizeof(struct
sockaddr).

Stream sockets may connect only once; while datagram sockets may re-connect multiple
times to change their association. The connection may be dissolved by attempting to
connect to an illegal address (for example, NULL IP address and Port). Datagram
sockets that require multiple connections may consider using the recvfrom() and sendto()
functions instead of connect().

It is possible to select (fdSelect()) a socket for the purposes of doing a connect by
selecting it for writing.

Get Name (Address) of Connected Peer

int getpeername(SOCKET s, PSA pName, int *plen);

Socket
Name (address) of connected peer
Pointer to size of pName

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

The file descriptor (socket) is invalid.

The file descriptor does not reference a socket.
Name arguments are invalid.

The socket is not connected.

The getpeername() function returns the name (address) of the connected peer.

The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.

SPRU524I-May 2001—Revised July 2014

Sockets and Stream 10 API 53

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
getsockname — Get the Local Name (Address) of the Socket www.ti.com
getsockname Get the Local Name (Address) of the Socket
Syntax int getsockname(SOCKET s, PSA pName, int *plen);

Parameters
S Socket
pName Name (address) of connected peer
plen Pointer to size of pName

Return Value

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Name arguments are invalid.
Description The getsockname() function returns the local name (address) of the socket.
The argument pName is a result parameter that is filled in with the address of the
connecting entity as known to the communications layer. The domain in which the
communication is occurring determines the exact format of the pName parameter. The
plen is a value-result parameter; it should initially contain at least sizeof(struct sockaddr),
the amount of space pointed to by pName; on return it will contain the actual length (in
bytes) of the address returned.
54 Sockets and Stream 10 API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
www.ti.com getsockopt — Get the Value of a Socket Option Parameter
getsockopt Get the Value of a Socket Option Parameter
Syntax int getsockopt(SOCKET s, int level, int op, void *pbuf, int *pbufsize);
Parameters
S Socket
level Option level (SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP)
op Socket option to get
pbuf Pointer to memory buffer
pbufsize Pointer to size of memory buffer
Return Value If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:
EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EINVAL Buffer arguments are invalid.
Description The getsockopt() function returns the options associated with a socket. Options may
exist at multiple protocol levels; they are always present at the uppermost socket level.
When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the socket level, level is specified
as SOL_SOCKET. To manipulate options at any other level, the protocol number of the
appropriate protocol controlling the option is supplied. In this implementation, only
SOL_SOCKET, IPPROTO_IP, and IPPROTO_TCP are supported.
The parameters pbuf and pbufsize identify a buffer in which the value for the requested
option(s) are to be returned. pbufsize is a value-result parameter, initially containing the
size of the buffer pointed to by pbuf, and modified on return to indicate the actual size of
the value returned.
Most socket-level options utilize an int parameter for pbuf. SO_LINGER uses a struct
linger parameter, which specifies the desired state of the option and the linger interval
(see below). SO_SNDTIMEO and SO_RCVTIMEO use a struct timeval parameter.
The following options are recognized at the socket level:
SO_REUSEADDR Specifies that the rules used in validating addresses supplied in a bind
call should allow reuse of local addresses.
SO_REUSEPORT Allows completely duplicate bindings by multiple processes if they all set

SO_REUSEPORT before binding the port. This option permits multiple
instances of a program to each receive UDP/IP multicast or broadcast
datagrams destined for the bound port.

SO_KEEPALIVE Enables the periodic transmission of messages on a connected socket.
Should the connected party fail to respond to these messages, the
connection is considered broken and processes using the socket are
notified when attempting to send data.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing
facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SPRU524|I-May 2001 —-Revised July 2014 Sockets and Stream 10 API 55

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

getsockopt — Get the Value of a Socket Option Parameter www.ti.com

SO_LINGER

SO_BROADCAST

SO_OOBINLINE

SO_SNDBUF
SO_RCVBUF
SO_SNDLOWAT

SO_RCVLOWAT

SO_SNDTIMEO

SO_RCVTIMEO

SO_TYPE
SO_ERROR

Controls the action taken when unsent messages are queued on socket
and a close is performed. If the socket promises reliable delivery of data
and SO_LINGER is set, the system will block the process on the close
attempt until it is able to transmit the data or until it decides it is unable to
deliver the information (a timeout period, termed the linger interval, is
specified in seconds in the setsockopt call when SO_LINGER is
requested). If SO_LINGER is disabled and a close is issued, the system
will process the close in a manner that allows the process to continue as
quickly as possible.

Requests permission to send broadcast datagrams on the socket.
Broadcast was a privileged operation in earlier versions of the system.

With protocols that support out-of-band data, this option requests that
out-of-band data be placed in the normal data input queue as received; it
will then be accessible with recv or read calls without the MSG_0OOB
flag. Some protocols always behave as if this option is set.

Buffer size for output.
Buffer size for input.

Is an option to set the minimum count for output operations. Most output
operations process all of the data supplied by the call, delivering data to
the protocol for transmission and blocking as necessary for flow control.
Non-blocking output operations will process as much data as permitted
subject to flow control without blocking, but will process no data if flow
control does not allow the smaller of the low water mark value or the
entire request to be processed. A select operation testing the ability to
write to a socket will return true only if the low water mark amount could
be processed. The default value for SO_SNDLOWAT is setto a
convenient size for network efficiency, often 1024.

Is an option to set the minimum count for input operations. In general,
receive calls will block until any (non-zero) amount of data is received,
then return with the smaller of the amount specified by SO_RCVLOWAT
or the amount requested. The default value for SO_RCVLOWAT is 1.
Receive calls may still return less than the amount specified by
SO_RCVLOWAT or the amount requested if an error occurs, or the type
of data next in the receive queue is different from that which was
returned.

Is an option to set a timeout value for output operations. It accepts a
struct timeval parameter with the number of seconds and microseconds
used to limit waits for output operations to complete. If a send operation
has blocked for this much time, it returns with a partial count or with the
error EWOULDBLOCK if no data were sent. In the current
implementation, this timer is restarted each time additional data are
delivered to the protocol, implying that the limit applies to output portions
ranging in size from the low water mark to the high water mark for
output.

Is an option to set a timeout value for input operations. It accepts a struct
timeval parameter with the number of seconds and microseconds used
to limit waits for input operations to complete. This timer is restarted
each time additional data are received by the protocol, and thus, the limit
is in effect an inactivity timer. If a receive operation has been blocked for
this much time without receiving additional data, it returns with a short
count or with the error EWOULDBLOCK if no data were received.

SO_TYPE returns the type of the socket, such as SOCK_STREAM.

Returns any pending error on the socket and clears the error status. It
may be used to check for asynchronous errors on connected datagram
sockets or for other asynchronous errors.

56 Sockets and Stream 10 API

SPRU5241-May 2001—Revised July 2014
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS
INSTRUMENTS

www.ti.com

getsockopt — Get the Value of a Socket Option Parameter

SO_PRIORITY

Is an option to set the VLAN user priority bit mapping for a given socket.
It accepts only unsigned integer values. The valid values that can be
configured for this option are 0-7. When a value of OxFFFF is set to this
option, it resets the priority back to its default value.

Options that are not Berkeley standard:

SO_IFDEVICE

SO_BLOCKING

SO_TXTIMESTAMP

Specifies a uint index (1 to n) of the designated interface for sending and
receiving IP broadcast packets. When set, this interface is selected on a
IP broadcast send operation if the socket's local (bound) IP address is
NULL (INADDR_ANY). Also, when set, the socket will only accept
incoming broadcast packets if they have been received on this interface.

Specifies a int flag (1 or 0) indicating if the socket is in blocking or non-
blocking mode. Sockets default to blocking mode when created, but can
be set to non-blocking by using setsockopt(). This option provides the
same functionality as calling the Unix function Fcntl() with the
O_NONBLOCK flag.

Specifies a call-out function to allow timestamping of transmitted UDP
datagrams per socket basis. The NDK calls this function before adding
the datagram into the driver's transmit queue. The function prototype of
the call-out is "typedef void (*TimestampFxn)(UINT8 *plpHdr)". This call-
out function is responsible for updating the UDP checksum accordingly.

The following options are recognized at the IPPROTO_IP level:

IP_OPTIONS

IP_HDRINCL

IP_TOS
IP_TTL
IP_ADD_MEMBERSHIP

IP_DROP_MEMBERSHIP

Specifies the IP options to be included in any outgoing IP packet sent via
this socket (maximum length is 20 bytes).

Indicates to IP that the socket application is supplying the IP header as
well as the rest of the packet payload. This is for use with RAW sockets
only.

Specifies the TOS value to place in the IP header.
Specifies the TTLvalue to place in the IP header.

Specifies the multicast group to join. It accepts a struct ip_mreq
parameter (as defined in RFC 3678) which specifies multicast group
address that the application wants to join and the interface IP address to
use for joining the multicast group.

Is an option used to leave a multicast group for a specified interface. It
accepts a struct ip_mreq parameter (as defined in RFC 3678) which
specifies the IP address of the multicast group to leave and the interface
IP address on our device to use to leave the group.

The following options are recognized at the IPPROTO_TCP level:

TCP_MAXSEG
TCP_NODELAY
TCP_NOPUSH
TCP_NOOPT
TCP_SACKPERMITTED

Set the maximum TCP segment size.

Disables TCP send delay/coalesce algorithm.

Do not send data just to finish a data block (attempt to coalesce).
Do not use TCP options.

Permit RFC-2018 Selective Acknowledgment(SACK) conformant
connection. The SACK permitted option is exchanged at socket
connection time. Hence; on server side, the setting must be done before
calling "accept()", and on clint side before calling "connect()".

SPRU524I-May 2001—Revised July 2014
Submit Documentation Feedback

Sockets and Stream 10 API 57

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
listen — Listen for Connection Requests on Socket www.ti.com
TCP_MAXRTT The maximum TCP Round Trip Time value allowed in the determination
of the estimated TCP RTT. TCP packets containing RTT values greater
than the value specified will not be used in the TCP RTT calculation
(however, the packets are still processed by the stack). Units are in
milliseconds. Values are rounded up to the next internal clock tick (100
millisecond). The minimum value is 100 milliseconds. The default value
is 1 hour.
listen Listen for Connection Requests on Socket
Syntax int listen(SOCKET s, int maxcon);
Parameters
S Socket
maxcon Maximum number of connects to queue

Return Value

If it succeeds, the function returns 0. Otherwise, a value of -1 is returned and the
function fdError() can be called to determine the error:

EBADF The file descriptor (socket) is invalid.
ENOTSOCK The file descriptor does not reference a socket.
EOPNOTSUPP The socket is not of a type that supports the operation listen.
EISCONN The socket is already connected
Description The listen() function listens for connection requests on a socket.
To accept connections, a socket is first created with socket(). The listen() function is
called to specify a willingness to accept incoming connections and a queue limit for
incoming connections. New connections are accepted by calling the accept() function.
The listen() function applies only to sockets of type SOCK_STREAM.
The maxcon parameter defines the maximum length to which the queue of pending
connections may grow. If a connection request arrives with the queue full, the client
receives an error with an indication of ECONNREFUSED.
58 Sockets and Stream 10 API SPRU5241-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU524I

13 TEXAS

INSTRUMENTS
www.ti.com recv — Receive Data from a Socket
recv Receive Data from a Socket
Syntax int recv(SOCKET s, void *pbuf, int size, int flags);
Parameters
S Socket
pbuf Data buffer to place received data
size Size of desired data
flags Option flags
Return Value If it succeeds, the function returns the number of bytes received. Returns 0 on
connection oriented sockets where the connection has been clos