Tl Network Developer's Kit (NDK) v2.24

User's Guide

I3 TeExAas

INSTRUMENTS

Literature Number: SPRU523|
May 2001—Revised July 2014

I3 TEXAS
INSTRUMENTS

Contents

L 5] =T = 6
1 L@ =T YN 8
11 1o 0 8o 1T o 9
1.2 Installing and Setting Up the NDK and NSPiueiiiiiiiiini i s s s e naaes 9
020t R 151 2= 1 1 o 1 = N 0 S 9

1.2.2 Installing the NDK Support Package (NSP) ...uueiiuiirieiiiiiriii s ssasssisssans e sanesnaes 9

1.2.3 RebUlding NDK LIDFariEsueeeiiiieiiiiieeiaaiae s raate s ssaae e ssaanse s saann e s ssan e e ssaannesaaannesannns 10

1.3 N LS = T S N] = 1Y/ 0= | o 11
1.3.1 Design PhiloSOPNY w.uuuiieiiiii i e s e 11

TR 357 O o T g1 0] o 12

1.3.3 Library Dir@CtOry SIFUCTUIE ..uuuusessssssssastesssasssssasssssaaanssssasnnsssassssssassnnsssasnnsssssnnnessns 12

1.3.4 The STACK Library toueeieiteiiiiiri et s e ra s s s e saan s rna s aannanaes 13

1.3.5 NETTOOL LiDrari©s «ueuusiueinseiuiitisesesestssssssssssssssssssssasssssstsassassssssnssnnsnnssnssns 14

T T T 1 T 1o -1 14

IO T A o Y IR 1 o] = 15

1.3.8 NETCTRL LIDrari©s «ueuueieise ittt s s s s s s s ss s s s s s s s s s s sassassnansnnesns 15

1.4 N0 LG (0T = 1 10 1T T 16
1.4.1 Operating SYStem ADSIaCHON ... uutitt it 16

1.4.2 Sockets and Stream 1O APl ... 16

1.4.3 NETTOOL Services and SUPPOIt FUNCHONS .uvuiuuuesiiiieeeisiiesissisnesisisssssasssssannssssaannnesas 16

O 11 (=T 1 oS 7= 103 Y = 16

1.4.5 Hardware Adaptation Layer APlt r e saan s rsan e s ssaann e aaaneeaaaas 17

15 NDK SOftware Dir€CIOrY STIUCTUME 1.uuuusesiistssisastessaasssssnressaiasssssanessaassnsstsassnsssasnnssisansnessns 17
1.5.1 Directories in packagesMiNNaKvvuieiieiiriiir i 17

1.5.2 NDK INCIUAE File DIFECIOMY ... uueeeiiieeisaaete e et e ss e s s e e e e ssaann s s saanne s saaannsssannnnssaannnensnn 18

R 70 T 1o T o | = o 1 18

1.5.4 WIindows and LiNUX TeSt UtIlitES ... uuuuseiiueiieerisiriiirisnss i sries s s sres s aninesannanns 18

ST = g o] L= o (0T | = 10 19

1.6 Creating CCS Projects that USe the NDK.....uuieiiiiiiiiiiriis i is s s ssise s ssaans s saane s sannes 19
1.6.1 Adding NDK Support to an EXisting AppliCatioNveeeiiueiiieeiiiiiiiiri i naneens 20

1.6.2 Troubleshooting NDK Application BUildSc.uivieeiiiiiiniiiiiiris i saenas 20

1.6.3 Creating CCS Projects for Big-Endian AppliCatioNSc.eeiiiiiiiiiiiiiiiirii i raneens 21

1.7 Configuring NDK MOGUIES . .viuueiieiiitiie it r s e e s s s s a s s s s s a e s n s rn e aaneans 22
1.7.1 Adding a Module to YOUr Configurationuuessssssssssssrseiassesiissssissasre s, 25

1.7.2 Setting Properties for @ MOAUIEeeiiiieeiiiii i s ss s aane e aaans 25

1.7.3 Adding an Instance for @ MOAUIEueiiuiirieii i e n e 26

1.7.4 Saving Changes to the Configurationcveeivieeriniriiiri i 26

2 T a] o (=R N o] o] L o= 14T oY o 1= PP 27
2.1 B I (o 10T o] 1=F] o o] 11T PSP 28
2.2 The Network Client Example APPlICAtION ...vuueieeiiiiiii i aaes 28
b2 R = 10 o 1 o I ¢ =R AN o o] [o%= o o S 28

Y22 W Y- Lo 1 To IR d d TCY Y o] o] %= 4o] o 1 S 28

2.2.3 Testing the APPICALION .uuueeitii i s s 28

2.3 The Network Configuration Example APPlCAtioNvieeiiiiiiiiii i i e rranne e eaas 30
b2 0 R = 10 11 To T To I d a T=Y 2N o o] {7 4o] o 1 S 31

2 Contents SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS
www.ti.com
2.3.2 Loading the ApPPICAION. ... ue ettt e e e 31
2.3.3 Configuring the APPHCAtIONeeiii e r e s s r e e s aann e s raanna e e aannneens 31
2.3.4 Testing the APPIICALION . .uuuiiieeeiiiie i s s s s s r st saaae s saaar s s saannnsssannneannns 31
2.4 The Network HelloWorld Example ApplCatioNnvvveeiieeiiiiiiiiie s nenaes 32
b2 R = 10 o g To I g =YY o o] o3-S 32
A W Y- To [o T 1 =T N o o] o3 4o o 32
2.4.3 Testing the APPICALION .u.ueiit it r e 32
25 The Serial ClieNt EXAMPIES .. .uuiiie ittt r e s e e sr e et sa s e s ssannnssaannessaannnsaaannns 33
3 Network Application DeVEIOPMENTo ettt e et e e e e e e e e e aenenens 34
3.1 Configuring the NDK With XGCONFuiiiiiii i sesre s saiee s saaaeessaneessaanneessannressannnnesannnnes 35
3.1.1 Linked Libraries CONfIgUIatioNueesssisssssssssssssaseissesisssssss s ssnesase s ranssanness 37
3.1.2 Global Scheduling CoNfIQUIAtIONessiis et r e s ssaae s s s an e s saanne s saannnenss 37
3.1.3 Global Buffer ConfigUrationc.eeesssseessseseessesnessaaneessaaneesssanneessannsessssnneesssnnressssnnees 39
3.1.4 Global HOOK CONfIQUIALION .. vuuuseissesssiasssssesiate e s sras s sas s aar s saaess s e saa s ssseaaneaaness 39
3.1.5 Global Debug CoNfIQUIAIONussieseiiietesriitessraresraiaae s aae s saaas s s sannessaannsssaannnessnn 40
3.1.6 Advanced Global ConfigUrationuiieesesiiieeseiaressasnnessaaneesaannnessasnnessaanneessannnersennnes 41
R0 O A o [o [o @ 1= | ESJ= T T I ST= Y= £ 42
3.2 Configuring the NDK with C Code (Without XGCONF) ...uuiiiiieiiiiie i rs i srrins s ssaae s saanae s ananes 42
3.2.1 Required SYS/BIOS ODbjJECES tuuuuutiiiiiintesiaitessaiinessaasneessaannesssannressannresseannresssnnressssnnees 43
0 10T 8T L= 1 = 43
B 02 T I o] = 1V 1 = 43
3.2.4 System CoNfiQUIAtION .u.uueieiiiiesseieessaaineessaneessaanneessanneessaannesssannresssannessssnneesssnnness 43
B0 S N1 L [T1 = 14T] o 50
3.3 (O == Vi T = N 1=]S 54
3.3.1 Initializing the File DesCriptor Table. .. .cueeiiii i i e s s e s s e e e e e e saannesaannnes 54
3.4 L= 10 0] LT O 0T = 54
3.5 Application Debug and TroubleShOOtINGeeiieieiiii e a e e aans 56
3.5.1 Troubleshooting Common ProblemSueiiiiiiiiiii i e ise s ssee s sasne e s sannessannneesaannes 56
3.5.2 Controlling DeEDUYG MESSAGES 1. uviuuutintiiseiiteriteia s r e e r e ss s raneaas 58
3.5.3 Interpreting DEbUQG MESSAGES .. .uueiiuuteiiitseiiaeterraaateeaaateessansssaaaansssaanssstaananessannnnsinn 58
B TR S |V =1 oo o VA @] 11 o] i o J o 59
3.5.5 Program LOCKUDS ... uu sttt s r s e s r e 60
3.5.6 Memory Management REPOIMS ..uuuiiiiiiiiiitteeessisssss s see s s s s ssaaaassarrnesessssannns 60
4 NetWOrk CONTrOl FUNCHIONS c.uuuitiitieit i e e e s e a e e e e s a s eas 62
4.1 INtroduCtion t0 NETCTRL SOUICE . tuuuttiuteatisteissiatessssasssssssassssasssasesasssaisssasssannssassssnnesns 63
Nt R 1) o S 63
4.1.2 NETCTRL SOUICE FIlES uuueiiiiiiiiiiiiietiiiis st s s saar e s ssaat s s s s aan s s s ann s saann s anannness 63
0 O |V - 110 T 0 o] o0 63
ot S Ao [[o o od 1T L 64
7t ST = Yo T 19T T VT IS od =0 U] 1 T 64
4.2 N O I g IS T 1= [T 65
0 S Tod g =T 0] oY @ YT 1= 65
S o] =T [0 1 T oo g 65
4.2.3 Scheduler Thread PriOrity ... ie s r s e e aaaeaas 66
4.2.4 Tracking EVents With STKEVENT ...t v e s s e s s s s e s raaan e s asanna e rannnns 66
4.2.5 Scheduler LOOP SOUICE COUE t.uuuuttiieteiniuesisaisaesssasssssaissesssassstsasssessaansssssansrsssannnes 67
4.3 Disabling ON-Demand SEIVICES .. .uuuueiretiiuteiaeiaterse s saats s sar s sas s sarssassaannesanranns 69
5 L@ IS N =T o1 = U oY B == PP 71
5.1 Lo o (8 Tox T IR (o T 1S TS0 TU T o= S 72
L0 0 R o 1 (o] Y/ S 72
ST 0T T | o 1= 72
5.2 Task Thread ADSIraCtioN: TASK.C ...ttt ittt e s s s s s s s ssaans s aaanassaaannnsssannns 72
5.2.1 TaskSetEnv() and TaSKGEIENV().uuuieueretiiieteesiietessaannessaanneesssnneesassnnessasnnessssnneessennnensnn 72
SPRU523I-May 2001 —-Revised July 2014 Contents 3

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS
www.ti.com
5.2.2 TaskCreate(), TASKEXit(), and TASKDESIIOY()«ueueururrrerereneuruasrsrerenesuenssrereneasenesrereneaenenenns 73
5.2.3 Choosing the lIEnter()/lIEXit() EXClUSION Methodvvieiiiiiiiiiiiiii i e 73
5.3 Packer Buffer Manager: PBM.C ...t iriits s ssiiae s s as e s s e s saanae s s sannn e s sannnnesns 74
5.3.1 Packet BUfer POOI ..uueiieiiiiiie i s s e e e 74
5.3.2 Packet Buffer Allocation Methodvueeiissiiisiii i aaeens 74
5.3.3 Referenced RoUte HANAIESuviiiiiiiiiiiiiiii i e anen 75
5.4 Memory Allocation SYStem: MEM.C . ..uuuuuiitiiiteiiieratise s s ar s s s s e s st s saa e aannesannanns 75
55 Embedded File System: EFS.C ...uiiiuiiiiiiiiiiii i 75
5.6 General OS SUPPOI OSSY S C .. uuiiiiuitiaiite st aarr s rat et saaa s saaas s s ssaarsasaannrsasannness 76
5.7 Jumbo Packet Buffer Manager (JUMBO PBM)uuiiieiiiiiiiiiii s e snan s s sinnssnssaneanaes 76
5.8 LTS 0T 0] 1Y/ g =T T 76
AV AR T Lo o I 1] Ko] Y/ P 77
Contents SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures
O S 7= Tod Q@0 i o I (o 12
1-2. Endianness Option in Advanced Settings for New CCS ProjeCt.....uvviieiiiiiiiisiiiiiisiiiiiiinesisananess 21
I N OF (@ N ==] 0= 1)Y= [0 o 22
1-4. NDK Modules in Available ProdUCES LIStcuuiieeeiiieiiiiee i aiee s raaar e ssansessaannsssannnessaaneesannns 23
1-5. NDK System OVErvVieW DIBgIamMueeiieseesisusessastssssissssssasnsssaannssssassssassnnestssnesisssnssiannns 24
1-6. Adding a Module to the COoNfIQUIALIONeiseiiiii i s r s s r e as e nnas 25
I Y (o o [0 L=] =T 4 11T 25
1-8. DHOCP SerIVer INSANCE uuuuuussssrrneessssssssissssssssseesssssssassaasaassssssseessttmmssasssssssnnnmeessmmmmmsnns 26
3-1. Configuring the IP MOGUIEueiieiit i e s s s s s e s n e s an e aa e e s n s rnenas 42
List of Tables
A-1. DocumMeENt REVISION HISTOIY .. uueuiusseiiiiuiesisiatessatsessaas e ss s s s s aa s s ssa s et ssasan s ssaannessaannnsssannns 7
SPRU523I-May 2001 —-Revised July 2014 List of Figures 5

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS

Preface
SPRU523I-May 2001-Revised July 2014

Read This First

About This Manual

The document covers NDK programming as it applies to the TMS320C6000, Cortex-A8, and ARM9
programming environment, including Code Composer Studio™ (CCStudio) Development Tools. It is not
intended as an API reference. This manual also provides necessary information regarding how to
effectively install, build, and use the Network Developer's Kit (NDK) in user systems and applications.

The latest version number as of the publication of this guide is NDK v2.24.

How to Use This Manual

The information presented in this document is divided into the following chapters:
* Chapter 1: Overview introduces the stack and developing network applications.

» Chapter 2: Example Applications provides examples that are good for platform test and
demonstration, and also serve as a good starting point for developing your own network applications.

e Chapter 3: Network Application Development describes the NDK software, and how to start
developing network applications now.

» Chapter 4: Network Control Functions describes the internal workings of the network control layer
(NETCTRL).

» Chapter 5: OS Adaptation Layer describes the OS adaptation layer that controls how the NDK uses
SYS/BIOS resources. This includes Tasks, Semaphores, memory and printing. Anything that is related
to OS can be adjusted here. While the NDK is built for the SYS/BIOS operating system, the NDK OS
Adaption Layer can be modified to support other operating systems, if you so desire.

* Appendix A: Revision History describes the changes to this document since the previous release.

Notational Conventions

This document uses the following conventions:

» Program listings, program examples, and interactive displays are shown in a special typeface.

* In syntax descriptions, the function or macro appears in a bold typeface and the parameters appear in
plainface within parentheses. Portions of a syntax that are in bold should be entered as shown;

portions of a syntax that are within parentheses describe the type of information that should be
entered.

» Macro names are written in uppercase text; function names are written in lowercase.

Related Documentation From Texas Instruments

Additional information about the NDK can be found in SPRU524 (Tl Network Developer's Kit (NDK) API
Reference Guide.) and the NDK category of the TI Embedded Processors Wiki. If you have questions, you
can ask them on the BIOS forum in TI's E2ZE community.

Information about SYS/BIOS, which is used in NDK applications, can be found in the SPRUEXS (Tl
SYS/BIOS Real-time Operating System User's Guide) and the SYS/BIOS main page of the TI Embedded
Processors Wiki.

6 Read This First SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com/lit/pdf/spru524
http://processors.wiki.ti.com/index.php/Category:NDK
http://e2e.ti.com/support/embedded/bios/f/355.aspx
http://www.ti.com/lit/pdf/spruex3
http://processors.wiki.ti.com/index.php/Category:SYSBIOS
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Related Documentation From Texas Instruments

The following documents describe Cortex™-A8 and ARM9 devices and related support tools. Many of
these documents can be found on the Internet at http://www.ti.com.

SPNU151— ARM Optimizing C/C++ Compiler User's Guide

SPNU118— ARM Assembly Language Tools User's Guide
SPRUH73— AM335x ARM® Cortex™-A8 Microprocessors (MPUs) Technical Reference Manual
Cortex-A8 wiki page—on the TlI Embedded Processors Wiki

ARM9 wiki page—on Ti's Embedded Processors Wiki

Sitara ARM Microprocessors forum—in Tl's E2E Community

The following documents describe the TMS320C6x™ devices and related support tools. To obtain a copy
of any of these Tl documents, call the Texas Instruments Literature Response Center at (800) 477-8924.
When ordering, please identify the book by its title and literature number. Many of these documents can
be found on the Internet at http://www.ti.com.

SPRU189 — TMS320C6000 DSP CPU and Instruction Set Reference Guide.

SPRU190 — TMS320C6000 DSP Peripherals Overview Reference Guide.
SPRU197 — TMS320C6000 Technical Brief.
SPRU198 — TMS320C6000 Programmer's Guide

SPRU509 — TMS320C6000 Code Composer Studio ™Development Tools v3.3 Getting Started
Guide

SPRUFP2 — TMS320C6000 Network Developer's Kit (NDK) Support Package Ethernet Driver Design
Guide.

Cortex, TMS320C6x, Code Composer Studio are trademarks of Texas Instruments.
ARM is a registered trademark of Texas Instruments.
Windows is a registered trademark of Microsoft.

SPRU523I-May 2001—Revised July 2014 Read This First 7

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com
http://www.ti.com/lit/pdf/spnu151
http://www.ti.com/lit/pdf/spnu118
http://www.ti.com/lit/pdf/spruh73
http://processors.wiki.ti.com/index.php/Cortex-A8
http://processors.wiki.ti.com/index.php/ARM9
http://e2e.ti.com/support/dsp/sitara_arm174_microprocessors/default.aspx
http://www.ti.com
http://www.ti.com/lit/pdf/spru189
http://www.ti.com/lit/pdf/spru190
http://www.ti.com/lit/pdf/spru197
http://www.ti.com/lit/pdf/spru198
http://www.ti.com/lit/pdf/spru509
http://www.ti.com/lit/pdf/SPRUFP2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

1 Chapter 1
I TEXAS SPRU523I-May 2001-Revised July 2014

INSTRUMENTS

Overview

This chapter introduces the Network Developer's Kit (NDK) by providing a brief overview of the purpose
and construction of the NDK, along with hardware and software environment specifics in the context of
NDK deployment. This Network Developer's Kit (NDK) Software User's Guide serves as an introduction to
both the NDK and to developing network applications.

Topic Page
0 0 oo [0 Ko o o PP 9
1.2 Installing and Setting Up the NDK and NSPcuiiiiiiiiiiiiiieieeieeeeeeeae e eeae s 9
1.3 NDK Stack LiDrary DeSION «.cuuuuie ettt e et e e s e e e e s e e eaens 11
1.4 NDK Programming APISttt ettt et e et e e e e aaaan 16
1.5 NDK Software Dir€CtOry StrUCTUIE ... uuieiiiit ittt e ti ettt s e e e e aa e saeeaenees 17
1.6 Creating CCS Projects that Use the NDK.........oiiiiiiiiiiiicier e ae 19
1.7 Configuring NDK MOAUIESueeieeeiie ettt e et et e e e e e e e e e e eens 22

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS

INSTRUMENTS

www.ti.com Introduction

1.1

1.2

121

1.2.2

Introduction

The Network Developer's Kit (NDK) is a platform for development and demonstration of network enabled
applications on Tl embedded processors, currently limited to the TMS320C6000 DSP family and ARM
processors. The code included in this NDK release is generic C code which runs on any C64P, C66,
C674, ARM9, Cortex-A8, or Cortex-M3 device. (For C6000 processors, both big-endian and little-endian
modes are supported.) The NDK stack serves as a rapid prototyping platform for the development of
network and packet processing applications. It can be used to add network connectivity to existing
applications for communications, configuration, and control. Using the components provided in the NDK,
developers can quickly move from development concepts to working implementations attached to the
network.

The NDK is a networking stack that operates on top of the SYS/BIOS Real-Time Operating System
(RTOS). The stack can be ported to any hardware in the TMS320C6000, Cortex-A8, and ARM9 families.
The NDK software package is designed to be a transparent add-on to SYS/BIOS and Code Composer
Studio ™Development Tools.

Installing and Setting Up the NDK and NSP

The NDK is designed to be used with Code Composer Studio (CCS). It is compatible with CCS v5.4 and
higher. The instructions and figures in this document are for use with CCS v6, and there are advantages
to using the NDK with CCS v6 or higher. It is best to install the version of CCS that you will use with the
NDK before installing the NDK.

Installing the NDK

If you are using CCS v6, you can install the NDK by installing TI-RTOS for your target family. The NDK is
included as a component of TI-RTOS for C6000, TI-RTOS for Sitara, TI-RTOS for Tiva, and TI-RTOS for
C2000 (for the ARM Cortex-M3 portion of Concerto devices, but not for C28x devices). TI-RTOS includes
a number of components that can be used with the NDK, including SYS/BIOS.

To install TI-RTOS (including the NDK), choose View > CCS App Center in CCS. Click "See more" for
the Code Composer Studio Add-ons to see all of the TI-RTOS target versions. Select the version you want
to install and click the Install Software button. Follow the prompts to complete the installation.

Note that the version of the NDK installed with TI-RTOS may not be the most recent version of the NDK
available. If you want the most recent version of the NDK, you can download a the NDK as a zipped
archive from TI's Embedded Software Download Page. In addition, the code in the standalone NDK
installation can be used with any C64P, C66, C674, ARM9, Cortex-A8, Cortex-A9, Cortex-Al5, Cortex-M3,
or Cortex-M4 device. Note that C64P libraries and COFF libraries are not pre-built in the installation; you
can build NDK libraries for these options manually.

If you are using CCS v5.x, download a the NDK as a zipped archive from TI's Embedded Software
Download Page. Unzip the downloaded file (on Windows or Linux) in the directory where you installed
Code Composer Studio (CCS). For example, if you unzip the downloaded NDK file in the c:\ti directory on
Windows, the <NDK_INSTALL_DIR> will be c:\ti\ndk_# ##_ ## ##, where # is a digit in the version
number.

After you install the NDK, start CCS. You will be notified that CCS found one or more products and asked
if you want to use them. You will need to restart CCS in order to make new products available within CCS.

Installing the NDK Support Package (NSP)

If you installed TI-RTOS for Tiva or TI-RTOS for C2000, Ethernet drivers and examples are provided
with TI-RTOS for some devices and boards. So, you do not need to install a separate NDK Support
Package (NSP). Note that TI-RTOS for C2000 provides an Ethernet driver for the ARM Cortex-M3 portion
of Concerto devices, but not for C28x devices.

For other devices, the Ethernet drivers and examples are not included with TI-RTOS. Please contact
your local Field Applications Engineer for details on how to get the appropriate NSP. Links to NDK
Support Packages (NSPs) for some devices may be available on the Texas Instruments Wiki.

SPRU523I-May 2001 —-Revised July 2014 Overview 9

Submit

Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://processors.wiki.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Installing and Setting Up the NDK and NSP www.ti.com

123

For example, for C6748 devices, you can download the NDK Support Package (NSP) from the Embedded
Software Download Page. This NSP contains Ethernet driver code, libraries, and network examples for
C6748 and OMAP-L138. Unzip the NSP file in same the directory where you installed Code Composer
Studio (CCS). For example, if you unzip the downloaded NSP file in the c:\ti directory on Windows, the
<NSP_INSTALL_DIR> will be c:\ti\nsp_# ## ## ##, where # is a digit in the version number.

Rebuilding NDK Libraries

The NDK installation includes all source files and full support for rebuilding its libraries. In order to rebuild
the NDK libraries, please see the instructions in the Rebuilding the NDK Core Using gmake topic in the
Texas Instruments Wiki.

You can define the following macros to cause variations in the behavior of the rebuilt NDK libraries:

 _INCLUDE_ACD_SUPPORT -- If defined, Address Resolution Protocol (ARP) entries are not added if
an ARP request comes from a machine on a different subnet than the NDK host. By default, an ARP
entry is added for all ARP requests.

« _INCLUDE_IPv6_CODE -- If defined, IPv6 support is enabled.

* _INCLUDE_JUMBOFRAME_SUPPORT -- If defined, packet sizes larger than 1500 bytes are
supported.

 _INCLUDE_NAT_CODE -- If defined, Network Address Translation (NAT) support is provided by the
stack.

_INCLUDE_PPP_CODE -- If defined, the Point-to-Point Protocol (PPP) module is included.
_INCLUDE_PPPOE_CODE -- If defined, enable the PPP over Ethernet (PPPoE) client.
_STRONG_CHECKING -- If defined, error checking is performed on all handles.

10

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://processors.wiki.ti.com/index.php/Rebuilding_The_NDK_Core_Using_Gmake
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS
INSTRUMENTS

www.ti.com NDK Stack Library Design

1.3

131

NDK Stack Library Design

The NDK was designed to provide a full TCP/IP functional environment, with or without routing, in a small
memory footprint.

Network application development is typically performed in Code Composer Studio (CCStudio). The stack
libraries are designed to work with Code Composer Studio. If you have experience creating makefiles, you
can write and use your own makefiles to build a network application. However, the NDK does not provide
example makefiles for building from the command line.

Design Philosophy

The NDK is isolated from both the native OS and the low-level hardware by abstracted programming
interfaces. The native OS is abstracted by an operating system adaptation layer (OS), and custom
hardware is supported via a hardware adaptation layer (HAL) library. These libraries are used to interface
the stack to SYS/BIOS and to the system peripherals.

The NDK stack was originally designed to be able to communicate with a single device driver at a time.
This was called the LL Packet Driver architecture. The Network Interface Management Unit (NIMU)
architecture was introduced in the NDK 1.94 release to overcome this limitation of the LL packet driver
architecture. Applications are now always compiled with NIMU support. NIMU provides an interface
between the stack and the device drivers through which the stack can talk to multiple instances of a single
or various device drivers concurrently.

In comparison to single-port serial device applications, the NIMU architecture is best suited for Ethernet
type devices where it is most common to have multiple instances running concurrently. LL Packet driver
architecture is no longer supported from NDK v2.0 release onwards. All the core NDK libraries and the
supporting NSP Ethernet driver libraries for the platforms are NIMU-compliant. To obtain LL compliant
drivers, one would have to obtain them from an older NDK release.

Various features like virtual LAN (VLAN), Raw Ethernet socket and IPv6 stack support are controlled by
NIMU. VLAN support enables the stack to receive, process, and transmit VLAN tagged packets. Similarly,
support for Raw Ethernet sockets (different from Raw IPv4/IPv6 sockets) enables any application using
the NDK stack to send/receive Ethernet packets with custom Layer 2 (L2) protocol type, i.e., protocol type
in the Ethernet header of the packet other than any of the well known standard protocol types like IP
(0Ox800), IPv6 (0x806), VLAN (0x8100), PPPoE Control (0x8863) or PPPoE Data (0x8864). The stack is
available for both IPv6 and IPvA4.

The NDK core stack can support Jumbo frames (packet sizes larger than 1500 bytes) also. The Jumbo
frame support can be built into an application by linking with libraries compiled for Jumbo frame support.
The libraries and application would have to be recompiled with the following pre-processor definition
added: INCLUDE_JUMBOFRAME_SUPPORT.

For more details on VLAN, IPv6, Raw Ethernet sockets and Jumbo frames support, see the Tl Network
Developer's Kit (NDK) API Reference Guide (SPRU524).

SPRU523I-May 2001—Revised July 2014 Overview 11
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

NDK Stack Library Design www.ti.com

1.3.2 Control Flow

Figure 1 shows a conceptual diagram of how the stack package is organized in terms of function call
control flow. The five main libraries that make up the NDK are shown. These are STACK, NETTOOL, OS,
HAL, and NETCTRL. These libraries are summarized in sections that follow. NIMU related changes are
also discussed in the affected libraries (STACK, NETCTRL, and NETTOOL).

Network
application

: t vy oy

.

Network tools
(NETTOOL)

OS adaptation TCP/IP stack
RTOS ~— I(egfg)r 4 library (STACK)

: :

Hardware Network
adaptation control
layer (HAL) (NETCTRL)

Figure 1-1. Stack Control Flow

1.3.3 Library Directory Structure

Pre-built linkable libraries and source code are provided for each of the libraries that make up the NDK in
the <NDK_INSTALL_DIR>\packages\tiindk directory tree. The pre-built libraries are in a lib subdirectory of
the directory for each library. See Section 1.5.1 for a list of the directories in
<NDK_INSTALL_DIR>\packages\ti\ndk.

Both IPv4 and IPv6 libraries are provided. Filenames that do not include "ipv4" are compiled for IPv6.
However, in the <NDK_INSTALL_DIR>\packages\ti\ndk\stack\lib directory, filenames that do not
include "6" are compiled for IPv4.

The NETCTRL library comes in "min", regular, and "full" versions. For example, netctrl_min, netctrl,
and netctrl_full. See Section 1.3.8 for details.

For platforms where it is supported, both little-endian and big-endian libraries are provided. Libraries
with an "e" in the file extension are big-endian libraries. All others are little-endian.

Libraries with Jumbo Frame support (for packet sizes larger than 1500 bytes) are not included in the
NDK installation. If you want NDK libraries with Jumbo Frame support enabled, you will need to
#define the _INCLUDE_JUMBOFRAME_SUPPORT pre-processor definition and rebuild the libraries
as described in the Rebuilding the NDK Core topic in the TI Embedded Processors Wiki.

12

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Rebuilding_the_NDK_Core
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS

www.ti.com

NDK Stack Library Design

The file extensions for pre-built libraries provided with the NDK include the following:

.aa8fg
.aa9fg
.aalbfg
.ae9
.ae66
.aeb6e
.ae674
.aea8f

.aea8fnv

.aem3
.am3g
.arm3
.aem4
.am4g
.arm4
.aemdf
.am4fg
.armaf

For Cortex-A8 targets (ELF format, little endian, GNU compiler)
For Cortex-A9 targets (ELF format, little endian, GNU compiler)
For Cortex-A15 targets (ELF format, little endian, GNU compiler)
For ARM9 targets (ELF format, little endian, TI compiler)

For C66x targets (ELF format, little endian, Tl compiler)

For C66x targets (ELF format, big endian, TI compiler)

For C674x targets (ELF format, little endian, TI compiler)

For Cortex-A8 targets (ELF format, little endian, T compilerl, does not use hardware-based
floating point support, for legacy application support)

For Cortex-A8 targets (ELF format, little endian, TI compiler, uses hardware-based vector
floating point support, recommended over .aea8f)

For Cortex-M3 targets (ELF format, little endian, TI compiler)

For Cortex-M3 targets (ELF format, little endian, GNU compiler)

For Cortex-M3 targets (ELF format, little endian, IAR compiler)

For Cortex-M4 targets (ELF format, little endian, TI compiler)

For Cortex-M4 targets (ELF format, little endian, GNU compiler)

For Cortex-M4 targets (ELF format, little endian, IAR compiler)

For Cortex-M4F floating point targets (ELF format, little endian, TI compiler)
For Cortex-M4F floating point targets (ELF format, little endian, GNU compiler)
For Cortex-M4F floating point targets (ELF format, little endian, IAR compiler)

The libraries provided with the NDK are platform independent. That is, versions of these libraries are
provided for all platforms. Any hardware-dependent libraries that exist only for certain platforms are
distributed in the appropriate NDK Support Package (NSP), which you download separately from the NDK.

The NDK installation includes all source files and full support for rebuilding its libraries. In order to rebuild
the NDK libraries, please see the instructions in the Rebuilding the NDK Core topic in the TI Embedded
Processors Wiki.

1.3.4 The STACK Library

The STACK library is the main TCP/IP networking stack. It contains everything from the sockets layer at
the top to the Ethernet and Point-to-Point Protocol (PPP) layers at the bottom. The library is compiled to
make use of the SYS/BIOS operating system, and does not need to be ported when moved from one
platform to another. Several builds of the library are included in the NDK.

The STACK libraries are provided in the <NDK_INSTALL_DIR>\packages\ti\ndk\stack\lib directory. The
following versions of the library either include or exclude features like PPP, PPP over Ethernet (PPPoE),
and Network Address Translation (NAT).

Library Variants Description
STK stk, stk6 Stack with NIMU, VLAN, and Raw Ethernet Socket support.
Variants support IPv4 or IPv6. No support for PPP, PPPoE, NAT
and LL architectures.
stk_nat, stk6_nat Stack with NAT, NIMU, VLAN, and Raw Ethernet Socket support.
Variants support IPv4 or IPv6. No support for PPP, PPPoE, and
LL architectures.
stk_nat_ppp, Stack with NAT, PPP, NIMU, VLAN, and Raw Ethernet Socket
stk6_nat_ppp support. Variants support IPv4 or IPv6. No support for PPPoE and
LL architectures.
stk_nat_ppp_pppoe, Stack with NAT, PPP, PPPoE, NIMU, VLAN, and Raw Ethernet
stk6_nat_ppp_pppoe Socket support. Variants support IPv4 or IPv6. No support for LL
architectures.
SPRU523I-May 2001—Revised July 2014 Overview 13

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Rebuilding_the_NDK_Core
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
NDK Stack Library Design www.ti.com
stk_ppp, stk6_ppp Stack with PPP, NIMU, VLAN, and Raw Ethernet Socket support.

135

1.3.6

Variants support IPv4 or IPv6. No support for NAT, PPPoE and LL
architectures.

stk_ppp_pppoe, Stack with PPP, PPPoE, NIMU, VLAN, and Raw Ethernet Socket
stk6_ppp_pppoe support. Variants support IPv4 or IPv6. No support for NAT and LL
architectures.

This library has been modified to additionally support NIMU core architecture, VLANS, IPv6, Jumbo
Frames and Raw Ethernet sockets. The NIMU core replaces the Ethernet and IF objects which existed
previously and provides the following services:

» Generates unigue names and identifiers for each NIMU network interface object. The unique name is
an extension to the previous LL packet layer architecture which only used device indexes for
identification.

* Provides an interface used by the drivers to pass Ethernet packets up to the NDK core stack. The
function supports handling of 802.3 and 802.1Q tags.

» Provides a configuration interface which allows the ability to configure receive filters/multicast
addresses, etc. This is done through the IOCTL interface API.

» Polls the various NIMU network Interface objects registered with it.

» Ensures that packets are allocated with sufficient head and tail room for customized headers which
need to be inserted by various layers.

The NDK stack also has support for VLAN processing by default, as mentioned earlier. The NIMU core
and VLAN modules in the NDK stack are very closely tied in. The VLAN module is brought down by the
NIMU as a part of its de-initializing routine during the system shutdown. Similarly, the NIMU module’s
packet receive routine is responsible for handing over all VLAN tagged packets to the VLAN module for
processing. It does so by checking all incoming packets for their L2 type and if it is VLAN, forwards the
packets onto the VLAN module of the stack for further processing.

NETTOOL Libraries

The Network Tools (NETTOOL) function library contains all the sockets-based network services supplied
with the NDK, plus a few additional tools designed to aid in the development of network applications. The
most frequently used component in the NETTOOL library is the tag-based configuration system. The
configuration system controls nearly every facet of the stack and its services. Configurations can be stored
in non-volatile RAM for auto-loading at BOOT time.

The NETTOOL libraries are provided in the <NDK_INSTALL_DIR>\packages\ti\ndk\nettools\lib directory.

The tools provided in the NETTOOL library use the NIMU IOCTL calls directly to retrieve device-related
information.

See Section 1.4.3 for information about the NETTOOL services and APIs.

OS Library

These libraries form a thin adaptation layer that maps some abstracted OS function calls to SYS/BIOS
function calls. This adaptation layer allows the SYS/BIOS system programmer to tune the NDK system to
any OS based on SYS/BIOS. This includes Task thread management, memory allocation, packet buffer
management, printing, logging, critical sectioning, cache coherency, interrupt management and jumbo
packet buffer management.

The OS libraries are provided in the <NDK_INSTALL_DIR>\packages\ti\ndk\os\lib directory. The "os"
library is the OS Adaptation Layer library with priority exclusion. The "os_sem" library uses semaphore
exclusion, instead. See Section 1.4.1 for information about the OS Adaptation Layer's use of Task and
Semaphore objects.

14

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS

www.ti.com NDK Stack Library Design

1.3.7

1.3.8

HAL Libraries

The HAL libraries contain files that interface the hardware peripherals to the NDK. These include timers,
LED indicators, Ethernet devices, and serial ports. The drivers contained in the
<NDK_INSTALL_DIR>\packages\ti\ndk\hal directory are as follows:

Library Description

eth_stub\lib\hal_eth_stub Ethernet Stub Driver
ser_stub\lib\hal_ser_stub Serial Stub Driver
timer_bios\lib\hal_timer_bios Timer Driver Using SYS/BIOS Timer object

userled_stub\lib\hal_userled_stub User LED Stub Driver

See Section 1.4.5 for information about the HAL APIs. The HAL is also discussed in the TI Network
Developer's Kit (NDK) API Reference Guide (SPRU524) and the NDK Support Package Ethernet Driver

Design Guide (SPRUFP2).

NETCTRL Libraries

The NETCTRL or Network Control library can be considered the center of the stack. It controls the
interaction between the TCP/IP and the outside world. Of all the stack modules, it is the most important to
the operation of the NDK. Its responsibilities include:

» Initializing the NDK and low-level device drivers

e Booting and maintaining system configuration via configuration service provider callback functions
» Interfacing to the low-level device drivers and scheduling driver events to call into the NDK

* Unloading the system configuration and driver cleanup on exit

The NETCTRL library has been modified for NIMU and related feature support to do the following:

 Initialize the NIMU core during stack bring-up, which in turn initializes and starts all the device drivers
registered with the NIMU core. Initializes the VLAN module in the NDK core stack.

» De-initialize NIMU core during stack shutdown, which in turn cycles through all the registered device
drivers and shuts them down.

» Polls all the registered devices periodically so as to allow them to perform any routine maintenance
activity, such as link management. Also, checks for any events, like packet reception, from any of the
registered devices.

» Initialize the IPv6 Stack if built in during stack bring up.

The NETCTRL library is designed to support "potential” stack features that the user may desire within their
application (e.g. DHCP server). However, the drawback of this is that the code for such features will be
included in the executable even if the application never uses the features. This results in a larger footprint
than is usually necessary.

To minimize this problem, the following different versions of the NETCTRL library are available in the
<NDK_INSTALL_DIR>\packages\ti\ndk\netctrl\lib directory:

e netctrl_min. This minimal library enables only the DHCP client. It should be used when a minimal
footprint is desired.

» netctrl. This "standard" version of the NETCTRL library enables the following features and has a
medium footprint:

— Telnet server
— HTTP server
— DHCP client
o netctrl_full. This "full" library enables all supported NETCTRL features, which include:
Telnet server
HTTP server
NAT server
DHCP client

SPRU523I-May 2001—Revised July 2014 Overview 15
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/SPRUFP2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

NDK Programming APIs www.ti.com

1.4

141

14.2

143

144

— DHCP server
— DNS server

All versions of NETCTRL support NIMU, VLAN, and Raw Ethernet Socket. Each of these NETCTRL
library versions is built for both pure IPv4 as well as IPv6.

If you configure the NDK in CCS with the XGCONF configuration tool, the appropriate NETCTRL library is
automatically selected based on the modules you enable.

You can rebuild the NETCTRL library to include only features you want to use. To do this, edit the
package.bld file in the<NDK_INSTALL_DIR>\packages\ti\ndk\netctrl directory, and redefine any of the
following options. For information about rebuilding the NDK libraries, see the Rebuilding the NDK Core
topic in the TI Embedded Processors Wiki.

* NETSRV_ENABLE_TELNET

* NETSRV_ENABLE_HTTP

* NETSRV_ENABLE_NAT

* NETSRV_ENABLE_DHCPCLIENT
* NETSRV_ENABLE_DHCPSERVER
* NETSRV_ENABLE_DNSSERVER

NDK Programming APIs

As previously stated, the stack has been designed for optimal isolation, and so that it may seamlessly plug
in to varying run-time environments. Therefore, you may be have the opportunity to use to several
different programming interfaces. They are listed here in decreasing order of relevance. All of the following
are described in detail in the TI Network Developer's Kit (NDK) API Reference Guide (SPRU524).

Operating System Abstraction

The OS abstraction consists of a custom Task and Semaphore API contained in the OS adaptation layer.
The STACK and NETTOOL libraries use these abstractions so that their OS use can be adjusted by
adjusting the implementation of the abstraction in OS. Note that Task and Semaphore handles created by
these APIs are physically SYS/BIOS Task and Semaphore objects.

Sockets and Stream 10 API

The sockets API is primarily consists of the standard BSD socket layer API, but contains a few other
useful calls. These functions are reentrant and thread safe. They appear as an extension of the standard
10 supplied with the operating system, and should not conflict with any native file support functions.

NETTOOL Services and Support Functions

The NETTOOL library includes both network services and basic network support functions. The API to the
support functions is standardized to that of Berkeley Unix where it makes sense, with some additional
functions provided for custom features.

The NETTOOL services include most network protocol servers required to operate the stack as a network
server or router. The API to the services is standardized and uniform across all supported services, plus
services may also be invoked by using the configuration system, bypassing the NETTOOL APIs entirely.

Internal Stack API

You will almost never use the internal stack API (can be thought of as kernel level API). However, it is
required for some types of stack maintenance, and it is called by some of the sample source code.

16

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com/index.php/Rebuilding_the_NDK_Core
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com

1.4.5 Hardware Adaptation Layer API

NDK Programming APIs

15

You will most likely never call the HAL API directly, but it is required when moving the stack to an
alternate hardware platform. The HAL is described in more detail in the Tl Network Developer's Kit (NDK)
API Reference Guide (SPRU524) and the TMS320C6000 Network Developer's Kit (NDK) Support
Package Ethernet Driver Design Guide (SPRUFP2).

NDK Software Directory Structure

The unzipped NDK files (for example, in c:\tindk_#_##_ ## ## or
c:\ti\tirtos_<family>_# ## ## ##\products\ndk_#_ ## ## ##), are organized into the following

subdirectories.

Directory Description

\docs Contains NDK documentation in PDF format. Access the online help from within CCS
by choosing Help—Help Contents from the menus.

\eclipse Contains files needed by CCS.

\manifests Used internally.

\packages The top-level package repository directory. See Section 1.5.1.

1.5.1 Directories in packages\ti\ndk

The <NDK_INSTALL_DIR>\packages\ti\ndk directory contains the following subdirectories. For each
library, both source files and pre-build libraries are provided.

Directory Description

benchmarks Contains spreadsheets with throughput and CPU load statistics from benchmark
testing on the Concerto TMDXDOCKH52C1 board.

config Used internally. Contains packages for all the modules configured by XGCONF and
used by application code.

docs Contains Doxygen documentation for NDK internals (for advanced users only).

hal Contains NDK driver libraries and source code. See Section 1.3.7.

inc NDK include file directory. See Section 1.5.2.

netctrl Contains libraries and source code for network startup and shutdown, including
special versions for various subsets of network functionality. See Section 1.3.8

nettools Contains libraries and source code for network tools, such as DHCP, DNS, and
HTTP. See Section 1.4.3.

0s Contains libraries and source code for the OS Adaptation Layer. See Section 1.3.6.

package Used internally.

productview Used internally by XGCONF.

reports Contains MISRA and Coverity analysis reports. Open the report.html file for details.

rov Used internally by the ROV debugging tool in CCS.

stack Contains libraries and source code for the network stack. See Section 1.3.4.

tools Contains libraries and source code for several network tools. See Section 1.5.3.

winapps Contains client test applications for Windows® and Linux command-prompt use. Both

source code and executables are provided. See Section 1.5.4.

SPRU523I-May 2001—Revised July 2014

Overview 17

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/SPRUFP2
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

NDK Software Directory Structure www.ti.com

15.2

153

154

NDK Include File Directory

The include file directory (<NDK_INSTALL_DIR>\packages\ti\ndk\inc) contains all the include files that can
be referenced by a network application. It is necessary to include this directory in the software tools
default search path, or in the search path of the CCStudio project file. The latter method is used in the
example programs. The major include files are as follows:

Filename Description

netmain.h Master include file for applications (stacksys.h, _nettool.h, _netctrl.h)

stacksys.h Main include file (minus the end-application oriented include files) (usertype.h,
serrno.h, socket.h, osif.h, hal.h)

_netctrl.h Includes references for the NETCTRL scheduler library

_hettool.h Includes references for all the services in the NETTOOL library

_oskern.h Includes kernel level OS functions declarations

_stack.h Includes all low level STACK interface functions

serrno.h Standard error values

socket.h Prototypes for all file descriptor based functions

stkmain.h Include file used by low-level modules (not for use by applications)

usertype.h Standard types used by the stack

Additional include files are provided in the subdirectories for the HAL, NETCTRL, NETTOOLS, OS,
STACK, and TOOLS libraries.

Tool Programs

The NDK provides several tools for various purposes. These are located in the
<NDK_INSTALL_DIR>\packages\ti\ndk\tools directory.

Subdirectory Variants Description

\binsrc -- Converts HTML files to C arrays. See the "Converting Standard HTML
Files" section in the Tl Network Developer's Kit (NDK) Referernce
Guide (SPRU524).

\cgi cgi Functions for parsing embedded HTTP Common Gateway Interface
(CaGl) files.

\console console, Command-line based console program.

console_ipv4
\hdlc hdlc High-Level Data Link Control (HDLC) client and server.
\servers servers, Servers used for testing NDK.

servers_ipv4

Windows and Linux Test Utilities

The WINAPPS directory contains four very simple test applications that can used to verify the operation of
the Console example program. These test applications act as network clients for TCP send, receive, and
echo, and for UDP echo operations. Most of the NDK example programs contain network data servers
that can communicate with these test applications. The SEND, RECV, ECHOC, and TESTUDP
applications are referenced in the description of these examples that can be found in Chapter 2.

Executable versions of these test programs are provided for both Windows and Linux.

You can use the supplied makefiles to rebuild these tools using the Microsoft Visual Studio or MinGW
compiler tools.

18

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS

INSTRUMENTS

www.ti.com NDK Software Directory Structure

1.5.5 Example Programs

1.6

If you installed TI-RTOS for Tiva or TI-RTOS for C2000, the Ethernet driver code, libraries, and
examples are included with the TI-RTOS drivers and examples. So, you do not need to install a separate
NDK Support Package (NSP).

For other devices, the Ethernet drivers and examples are not included with TI-RTOS. Please contact
your local Field Applications Engineer for details on how to get the appropriate NSP. Links to NDK
Support Packages (NSPs) for some devices may be available on the Texas Instruments Wiki.

For example, for C6748 devices, you can download the NDK Support Package (NSP) from the Embedded
Software Download Page. This NSP contains Ethernet driver code, libraries, and network examples for
C6748 and OMAP-L138. Unzip the NSP file in same the directory where you installed Code Composer
Studio (CCS). For example, if you unzip the downloaded NSP file in the c:\ti directory on Windows, the
<NSP_INSTALL_DIR> will be c:\ti\nsp_# ##_## ##, where # is a digit in the version number.

The NSP for the OMAP-L138 ARM9 and EVM6748 DSP has the following directory structure:

Directory Description
\docs Contains documentation-related files.
\eclipse Contains files used internally by CCS.
\packages Contains software
\ti\drv Contains drivers for OMAP-L138
\ti\ndk\examples Contains zip files of examples for several targets

Extract the files in the zip file for your target. ELF examples are provided for the EVM6748. The following
examples are provided in each zip file:

cfgdemo Embedded system configuration via HTTP demonstration
client Standard IP client demonstration
helloworld Basic stack setup demonstration

Creating CCS Projects that Use the NDK

Follow these steps to create a Code Composer Studio project that uses the NDK:

1. Choose View > Resource Explorer (Examples) from the CCS menus.

2. In the Tl Resource Explorer, type "Ethernet" in the field that says "enter search keyword".
3. Select an example that you want to import.

4. Click the link to "Import the example project into CCS".

See the documentation for TI-RTOS or SYS/BIOS for more details about creating and using examples.

"RTSC"—pronounced "rit-see"—stands for Real Time Software Components. It is the open-source project
within Eclipse.org for reusable software packaging for use in embedded systems. XDCtools, which is
installed as part of CCS, is an implementation of RTSC. You may see both "RTSC" and "XDCtools" in
CCS dialogs. In general, what you need to know about XDCtools is that it provides platform definitions and
tools for editing and building the static configuration file in CCS projects that use SYS/BIOS.

SPRU523I-May 2001—Revised July 2014 Overview 19
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://processors.wiki.ti.com
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://software-dl.ti.com/dsps/dsps_public_sw/sdo_sb/targetcontent/ndk/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Creating CCS Projects that Use the NDK www.ti.com

1.6.1 Adding NDK Support to an Existing Application

1.6.2

If you have an existing application that has SYS/BIOS and XDCtools support, but does not have either TI-
RTOS or the NDK enabled, follow these steps to enable the NDK and NSP:

1.

w

Right-click on the CCS project in the Project Explorer view. Choose Build Options from the context
menu.

Select the General category in the Properties dialog.
Go to the RTSC tab.

Check the boxes next to the most recently installed versions of the NDK and NDK Network Support
Package products.

Click OK.

Reopen the *.cfg file in the project with XGCONF. The NDK and NSP should now be listed in the
Available Products view.

Select the NDK > Global item in the Available Products view. You will see the Welcome sheet for
NDK configuration. This sheet provides an overview of the NDK, configuration information, and
documentation for the NDK.

Click the System Overview button in the Welcome sheet to see a handy diagram of the NDK modules
you can configure.

Troubleshooting NDK Application Builds

If you get errors when attempting to build an NDK application created from scratch as described in
Section 1.6, try the following:

In the XGCONF configuration editor, make sure the NDK's Global module is enabled. There should be
a green checkmark in the Global Network Settings box in the NDK - System Overview page. If it is
not enabled, right-click on the NDK Core Stack > Global module in the Available Products view, and
choose Use Global from the context menu.

In the XGCONF configuration editor, use the Available Products view to enable the NSP > Emac
module. Do this by right-clicking on the Emac module under the NSP component and choosing Use
Emac from the context menu.

If you needed to enable the Emac module, you should also copy the emacHooks.c file from one of the
NSP examples into your project.

Right-click on the CCS project file in the Project Explorer, and choose Build Options. Choose the
Build > Compiler > Include Options category. Add the c:\ti\ndk_# ## ## ##\packages\tiindk\inc
directory to the #include search path.

20

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Creating CCS Projects that Use the NDK

1.6.3 Creating CCS Projects for Big-Endian Applications

The NDK includes libraries built for little-endian architecture for all supported platforms. In addition, big-
endian libraries are provided for the C64x+ and C66x device families. The big-endian libraries all have file
extensions with an extra "e" (.a64Pe and .ae66e).

The correct libraries are linked in automatically based on the architecture you choose when you create a
project. It is best to specify that a CCS project should be big-endian when you create the project, rather
than trying to modify the endianness setting of an existing CCS project.

When you create a Code Composer Studio project that uses the big-endian libraries, perform the following
extra steps in addition to those in Section 1.6:

1. On the CCS Project page of the New CCS Project dialog, select "C6000" as the Family.

2. Type afilter in the Variant field. For example, you might type 643 to narrow the list of choices in the
drop-down list.

3. Select your target from the drop-down list. For example, choose EVMDM6437.

4. Click the small arrow next to Advanced settings. This hides the "Project templates and examples"
area and shows fields related to how to link and compile the project.

5. Change the Device endianness setting from "little" to "big".

Eﬂdvanced settings

Device endianness: big -

Cormpiler version: |'I'Iv?.3.1 v| | More... |
Output format: |Iegar_3,r COFF v|

Linker command file: - | Browse...
Runtime support library: <automatic> - | Browse...

i
Figure 1-2. Endianness Option in Advanced Settings for New CCS Project

6. Use the small arrows to switch back to viewing the "Project templates and examples" area. Select the
SYS/BIOS project template you want to use. Then, click Next.

7. Onthe RTSC Configuration Settings page of the New CCS Project dialog, notice that the Target for
the configuration is automatically set to a big-endian target because you selected the big-endian
architecture on the previous page of the New CCS Project wizard. For example, if you are using a
C6748 device, the Target may be ti.targets.C674_big_endian.

8. Click on the Platform field. CCS will search for platforms that match the Target. Open the drop-down
list of Platforms and choose your board or device. For example, ti.platforms.evm6748.

9. Click Finish to create the CCS project.

NOTE: Make sure you also link in the big-endian version of the platform support packages and
ensure the hardware switch for Big-Endian mode is selected.
SPRU523I-May 2001—Revised July 2014 Overview 21

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring NDK Modules www.ti.com

1.7

Configuring NDK Modules

To simplify configuration of the NDK and its components, the NDK now allows you to use the XGCONF
configuration tool within Code Composer Studio (CCS). Graphical displays let you enable and set
properties as needed, and context-sensitive help provides information about individual fields. XGCONF is
the same configuration tool used to configure SYS/BIOS. The application's configuration file (*.cfg) can
configure both NDK and SYS/BIOS modules and objects.

In previous versions of the NDK, applications were configured by writing C code that called CfgNew() to
create a configuration database and other Cfg*() functions to add various settings to that configuration
database. In addition, some configuration was done in the linker command file. (Internally, the same C
code is now generated to update the same configuration database when the *.cfg file is built.)

You can still choose to use C code to set up the configuration database if you have legacy code.
However, you must choose one method or the other to configure your application.

NOTE: You should not mix configuration methods. If you have legacy NDK applications that use the
old C-based configuration method, you should either continue to use that method or convert
the configuration entirely to an *.cfg file configuration. If a project uses both methods, there
will be conflicts between the two configurations.

Opening the XGCONF Configuration Editor

When you create a project using a SYS/BIOS template, the project will contain a configuration file (*.cfg)
that can be edited with the XGCONF graphical editor in CCS. If you checked the boxes to enable use of
the NDK and NSP when you created the project, you can configure your application's use of the NDK
modules. The configuration file is processed during the build to generate code that configures your
application.

This section provides an overview of how to use the XGCONF graphical editor. For more details, see
Section 2.2 of the Tl SYS/BIOS Real-time Operating System User's Guide (SPRUEX3)

To open XGCONF, follow these steps:

1. Make sure you are in the CCS Edit perspective of CCS. If you are not in that perspective, click the
CCS Edit icon to switch back.

M o e

FE [& CCS Edit | #5 CCS Debug

Figure 1-3. C/C++ Perspective Icon

2. Double-click on the *.cfg configuration file in the Project Explorer tree. While XGCONF is opening, the
CCS status bar shows that the configuration is being processed and validated.

3. When XGCONF opens, you see the Welcome sheet for SYS/BIOS. You should see categories for the
NDK Core Stack and your NSP in the Available Products area. If you do not, your CCS Project does
not have NDK support enabled. See Section 1.6.1 to correct this problem. (If the configuration is
shown in a text editor instead of XGCONF, right-click on the .cfg file in the Project Explorer and choose
Open With > XGCONF.)

22

Overview SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spruex3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring NDK Modules

4. Click the Global item in either the Available Products view (under the NDK Core Stack category) or
in the QOutline view

=% Available Products 52 — O

4 333 MDK Core Stack
¥ DhepClient
¥ DhepServer
5l Dns
& Hitp
& lemp
& lp
& Nat
& Ppp
47 Pppoe
V;f Route
& Tep
A Telnet
& udp

4 33§ NSP OMAPL138
A Emac

. 444 SVS/BIOS

- 333 ¥DCtools

. 1= All Repositories

Figure 1-4. NDK Modules in Available Products List

5. You will see the Welcome sheet for NDK configuration. This sheet provides an overview of the NDK,
configuration information, and documentation for the NDK.

SPRU523I-May 2001—Revised July 2014 Overview 23

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring NDK Modules www.ti.com

6. Click the System Overview button to see a handy diagram of the NDK modules you can configure. If
you are editing the configuration of one of the NSP examples, notice the green checkmarks next to
some modules. These checkmarks indicate that support for the modules have been enabled in the
configuration. (If you created a new NDK project as described in Section 1.6, only the Global module
is enabled by default.)

= client.cfg 22 = O
49 NDK - System Overview & [@
| Welcome | Systern Chvervie | Scheduling || Buffers || Hooks || Debug || Advanced | -

Application Layer

i DHCP |
; CLIENT :
i HTTP TELNET i
Global : :
Metwark i |
Settings i :
V) DHCP
: DS SERVER i
Transport Layer
| TCP uDP NAT
Network Layer
i P ICMP ROUTE !
e i
i 7] Enable IPv6 !
Data Link Layer
| PPP PPPOE i
ndk/Global | SY5/BIOS | Source
Figure 1-5. NDK System Overview Diagram
24 Overview SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring NDK Modules

1.7.1 Adding a Module to Your Configuration

To add support for a module to your configuration, follow these steps:

1. Click on a module that you want to use in your application in the System Overview diagram or in the
Available Products view.

2. In the Module Settings sheet, check the box to Add the <module>to my configuration. (You can
also right-click on a module in the Available Products view and choose Use <module> from the
context menu.)

2 *client.cfg &3 = 0O
a3 TCP Socket Settings - Module Settings oD@

Acdule | | Adwanced

The Tep module allows you to configure TCP socket settings.

-~

| Add the TCP module to my configuration

Figure 1-6. Adding a Module to the Configuration

3. Notice that the module you added to the configuration is now listed in the Outline view.

1.7.2 Setting Properties for a Module

To set properties for a module, go to the Module Settings sheet and type or select the settings you want to
use.

If you want information about a property, point to the field with your mouse cursor.

+ Buffer Settings

m

Default TCP Send Buffer Size EE'E
Default TCP Receive Buffer Size 8192 | Sets the size of the TCP send buffer

TCP Receive Buffer Size Limit 8192
Figure 1-7. Module Properties

For details about properties, right-click and choose Help from the context menu. This opens the CDOC
online reference system for the NDK. The properties names listed in this online help are the names used
in the configuration source file. You can click the Source tab at the bottom of the XGCONF editor window
to see the actual source statements.

SPRU523I-May 2001—Revised July 2014 Overview 25

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring NDK Modules www.ti.com

1.7.3 Adding an Instance for a Module

Some of the NDK modules allow you to create instances of that type. For example, you can create
instances of DHCP servers, DNS servers, HTTP servers, NAT servers, and Telnet servers. To create such
instances, follow these steps:

1. Go to the property sheet for the module for which you will add an instance.
2. Click the Instance button at the top of the Module Settings sheet.

3. Click the Add button to open a property window for a new instance. You can set properties here or in
the Instance Settings sheet.

4. Click OK to create the instance.
= *client.cfg 2 - O

&3 DHCP Server Settings - Instance Settings e H@

Instance || Advanced

w DHCP Servers + Parameters

add. | DHCPServerMode Flags

Use physical device index (CI5_FLG_IFIDXVALID)

EE ["| Resohve IP address before server start (CIS_FLG_RESOLVEIP)

[] Invoke DHCP cerver by IP address (CIS_FLG_CALLBYIP)

[] Restart server when new IP address is available (CI5_FLG_RESTARTIPTERM)

DHCP server execution control flags 0.0

Server interface ID 1

Figure 1-8. DHCP Server Instance

5. Notice that the instance you created is also listed in the Outline view.

1.7.4 Saving Changes to the Configuration

To save changes to your configuration, press Ctrl+S. You can also choose File > Save from the CCS
menus.

When you make changes to the configuration or save the configuration, your settings are validated. Any
errors or warnings found are listed in the Problems view and icons in the Outline view identify any
modules or instances that have problems.

26 Overview SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

1 Chapter 2
I TEXAS SPRU523I-May 2001-Revised July 2014

INSTRUMENTS
Example Applications
This section describes the main example applications included with the NSP software. The example

applications are designed to provide a small sample of potential applications that can be developed with
the NDK.

NOTE: The NDK examples described in this chapter have been moved to the NDK Support
Package (NSP), which you must download separately from the NDK. The NSP is meant to
supplement the Network Development Kit (NDK), which consists of the platform-independent
networking code. For some platforms, the NSP is provided in the SDK for that platform.

The descriptions in this chapter sometimes refer specifically to the NSP that supports the
EVM6748 and the OMAP-L138 and ARM9.

See Section 1.5.5 for a description of the directory structure of the examples in the NSP. You will need to
unzip the examples for your target in order to use or examine them.

The sample applications in the NSP can be run as is for a quick demonstration, but it is recommended to
use these samples as sample source code in developing new applications. For this, a working knowledge
of how the Code Composer Studio environment interacts with the NDK is helpful. Chapter 3 of this user's
guide is dedicated to the development of networking applications using CCStudio.

Topic Page

P22 A I (oYU o] (== o Yo 1 o 28

2.2 The Network Client Example APPliCatioN.....c.cuiuieieieiiieiie e eee e eeenes 28

2.3 The Network Configuration Example AppliCationccoeieiiiiiniiiiiiiiieieieeeee e 30

2.4 The Network HelloWorld Example AppliCationoviiiiiiiiiiiieiiei e e e 32

2.5 The Serial Client EXAmMPIES ...ttt et et a e e e e e aaas 33
SPRU523I-May 2001—Revised July 2014 Example Applications 27

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Troubleshooting www.ti.com

2.1

2.2

221

222

2.2.3

Troubleshooting

Some of the example applications described in this section require a network with support for DHCP. If
DHCP is not available, only the Configuration example can be run as-is. The remaining examples can be
rebuilt to use a fixed IP configuration using Code Composer Studio. See Chapter 3 for details on network
application initialization.

On some platforms, it is necessary to reset the device before loading an OUT file. If the example file fails
to initialize properly, it can be stopped or sent off into the weeds. This is caused by cache and interrupts
being in non-default state when loading.

The example program for each individual platform is pre-set with the preferred cache configuration. When
internal memory is not required, 4-way cache is used. Otherwise, cache is selected to meet internal
memory requirements. Any system that requires a specific memory/cache map should be clearly
documented.

The Network Client Example Application

NOTE: The example described in this section has been moved to the NDK Support Package (NSP),
which you must download separately from the NDK. Examples are stored in zip files in the
<NSP_INSTALL_DIR>\packages\ti\ndk\examples directory of the NSP installation.

The client example is the most important of all the example programs since it includes the most
components of an actual network application. The client example can use either DHCP or a statically
configured IP address. It launches a console application accessible via Telnet, an HTTP server with a
couple of example WEB pages, plus several data servers that can be tested by running client test
applications on a Windows PC. This application also illustrates the IPv6 stack functionality.

Building the Application
The application can be rebuilt directly from its project file using Code Composer Studio™.

Loading the Application

The application is loaded and executed via Code Composer Studio. It is a good idea to reset the board
before loading CCStudio, but this should not be required. The application displays status messages in
CCsStudio's standard 10 output window (Stdout).

On a successful execution, one of the status lines printed by the application displays the client's IP
address (either through DHCP or static configuration). Once this address is displayed, the DSP or ARM
responds to requests made to its IP address. When using DHCP, it is possible that the application will be
unable to obtain an IP address from a DHCP server. If so, the application eventually prints a DHCP status
message with the fault condition. Note that all the messages are generated by the main client module in
CLIENT.C.

Testing the Application

Once the application is executing and has printed out its IP address, several tests can be performed.

2.2.3.1 HTTP Server

To see the HTTP server in action, run an Internet browser, and point it to the IP address displayed by the
application. If the client application's IP address is 196.12.1.14, the URL would be:

http://196.12.1.14
Be sure and disable any proxy settings on the browser if your network is behind a firewall.

The browser displays a small WEB page describing the example application. There are server status
screens that can be accessed off this page. The source code used to generate these pages is further
described in the HTTP appendix of the TI Network Developer's Kit (NDK) API Reference Guide

(SPRUS24).

28

Example Applications SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com The Network Client Example Application

2.2.3.2 Telnet Server

The client example application also includes a console application with several tests and status query
functions available. In order to get to the console, simply telnet into the application's IP address. Note that
the console program will timeout and disconnect after a period of inactivity.

To get a list of console commands, type help or simply ?. This action prints a list of console commands to
the telnet terminal. The console program is important as a programming demonstration as much as a run
time demonstration. There are many functions in the console program that display or test features
particular to the NDK. When an application developer wants to use these features in their application, the
console example source code can be useful as a guide.

2.2.3.3 Data Servers

To try out the data servers, use the Windows or Linux test applications found in the WINAPPS directory
off the NDK root. The applications are command line driven and require a target IP address. For example,

type:
send 196.12.1.14
to start the data receiver. This requests data from the server running on the DSP or ARM. To get more

accurate benchmark numbers, the number of display updates can be reduced by typing an update period.
For example:

recv 196.12.1.14 100

starts the data send test (receive from the DSP or ARM's point of view) with a display update interval of
100 iterations.

echoc 196.12.1.14 100

starts the TCP data echo test (echoes back the characters it receives from the DSP or ARM) with a
display update interval of 100 iterations.

testudp 196.12.1.14
starts an UDP data server that tests the UDP client running on the DSP or ARM.

All the Windows test clients run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

2.2.3.4 IPv6 Stack Testing

The IPv6 stack comes with various command line driven tools like Ping6 (IPv6 based Ping utility), Tftp6
(IPv6 based TFTP client), and various test IPv6 socket-based applications, etc. Before getting to test
these applications, it is required by the user to first setup IPv6 address on the desired interface. This
section describes the steps to follow to set up and use any of the IPv6 utilities.

1. Telnet into the application's IP address from a PC to get to the console where the IPv6 commands can
be entered.

2. Type help or ? at the prompt to get a list of commands supported. If the IPv6 stack was successfully
compiled into the application, the following command line options must be seen on the screen:

ipv6 IPv6 Configuration
ping6 Test echo request over IPv6
vénslookup Lookup hostname or IPv6 address

3. Initialize and attach the IPv6 stack and setup a default link local address on a desired interface, say
interface name eth0. To do so, type:

ipv6 init ethO
This sets up a link local IPv6 address on ethO and the interface is ready for IPv6 communication.

SPRU523I-May 2001—Revised July 2014 Example Applications 29

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
The Network Configuration Example Application www.ti.com
4. Type the following to get an additional list of commands supported under ipv6:
ipv6
The following commands will be presented:
[ipv6 Command]
Use this to configure/display the IPv6 stack properties.
ipv6 Displays the usage screen
ipv6 init <if> Initialize the IPv6 stack on an interface
ipv6 deinit <if> Deinitialize the IPv6 stack on an interface
ipv6 add <if> <IPAddr> Adds an IPv6 address
<NumBits> <VLT> <PLT>
<ANYCAST/UNICAST>
ipv6 del <if> <IPAddr> Deletes an IPv6 address
ipv6 neigh Display the neighbor table
ipv6 route Display the IPv6 routing table
ipv6 bind Display a list of all configured IPv6 addresses
ipv6 stats Displays IPv6 stack statistics for core IPv6, TCP, UDP, RAW,
ICMPv6 modules
ipv6 test Test commands used to test the IPv6 API

2.3

Type ipv6 test to get a list of all the test commands available
These commands can be used to configure any manual global addresses, check various IPv6 stats,
and run various tests on IPv6 stack using IPV6 sockets.

5. Type the following to ping another IPv6 device with say a link local IPv6 address
fe80::213:72ff:fe8b:234b :-

ping6 fe80::213:72ff:fe8b:234b 1

The last parameter, i.e., interface index (scope id), must be specified only if using link local addresses
for ping. If using global IPv6 addresses, the scope id need not be specified.

6. Type the following to test TFTP6 client:

ipv6 test tftp <SrvIP> <File> [scopeid]

The scope id is required again only if the server IP address being used is a link local address.
7. Use vbnslookup command to resolve a given hostname to IPv6 address and vice-a-versa.
8. Type the following to bring down the IPv6 stack on a given interface, say ethO:

ipv6 deinit ethO

All IPv6 addresses are removed from this interface and the interface can no longer be used for IPv6
communication.

For more details on the IPv6 Stack APIs and data structures, refer to the IP Version 6 (IPv6) Stack API
section of the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524).

The Network Configuration Example Application

NOTE: The example described in this section has been moved to the NDK Support Package (NSP),
which you must download separately from the NDK. Examples are stored in zip files in the
<NSP_INSTALL_DIR>\packages\ti\ndk\examples directory of the NSP installation.

The Configuration Demo (CFGDEMO) example illustrates how the stack running in an embedded
environment can be easily configured without relying on DHCP. The demo boots up the DSP or ARM in
an idle state with no IP address. You assign a temporary IP address, and then an HTTP client browser
completes the configuration.

30

Example Applications SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS
INSTRUMENTS

www.ti.com The Network Configuration Example Application

231

2.3.2

2.3.3

Building the Application
The application can be rebuilt directly from its project file using Code Composer Studio.

Loading the Application

The application is loaded and executed via Code Composer Studio. The application displays status
messages in CCStudio's standard 10 output window (Stdout).

On a successful execution, one of the status lines printed by the application displays GetlP Ready. This
indicates that the DSP or ARM board is ready to have an IP address assigned by you. Note that all the
messages are generated by the main module in CFGDEMO.C.

Configuring the Application

Once the application is executing and has printed out its GetlIP Ready message, it is ready for
configuration.

2.3.3.1 Setting the Initial IP Address

The first step in configuring the device is to assign it a temporary (or permanent) IP address. The
CFGDEMO application uses the ICMP ping message to initially detect its IP address.

Once a free IP address is chosen (say 192.63.10.5), you can assign the IP address to the DSP or ARM by
using the ping command from another machine. Note that the DSK does not reply to ARP requests when
not configured; therefore, the MAC address for the chosen IP must be manually entered.

For those devices requiring a daughtercard, the MAC address of the DSK is usually found on the white
label affixed to the Ethernet daughtercard. For example, if the MAC address were 08-00-28-32-08-26, to
assign this MAC address to the selected IP address, on a Windows command line, type:

arp -s 192.63.10.5
08-00-28-32-08-26

Next, to assign the IP address to the CFGDEMO application on the DSK, type
ping 192.63.10.5

The DSK board should start replying to the ping command. Since the demo application prints some
additional status messages to CCStudio, it may miss a ping request during this time.

Once the application is responding to ping requests, it is ready for full configuration.

2.3.3.2 Full System Configuration

234

To complete the system configuration, an Internet browser is used. Run the browser and point it to the IP
address assigned to the DSP or ARM in the previous step. If the IP address is 192.63.10.5, the URL
would be:

http://192.63.10.5
Be sure and disable any proxy settings on the browser if your network is behind a firewall.

The browser displays a small WEB page describing the example application. There is a button on this
page that takes you to the configuration page. The password required to enter the configuration page is
printed on the screen.

Once in the configuration page, simply fill out the form and press the Submit button.

If DHCP was selected on the configuration form, the application attempts to get an IP address from a
DHCP server as with the Client example described in the previous section.

Testing the Application

Once the application is configured, has restarted and printed out its IP address, several tests can be
performed. These tests are identical to those in the previous Client example.

SPRU523I-May 2001—Revised July 2014 Example Applications 31
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

The Network HelloWorld Example Application www.ti.com

2.3.4.1 Telnet Server

The example application includes a console application with several tests and status query functions
available. In order to get to the console, simply telnet into the application's IP address. Note that the
console program will timeout and disconnect after a period of inactivity. Note also that the Telnet console
can be disabled from the configuration WEB page.

2.3.4.2 Data Servers

24

241

24.2

243

To try out the data servers, use the Windows test applications found in the \WINAPPS directory. The
applications are command line driven and require a target IP address. For example, type:

recv 192.63.10.5

to start the data receiver. This action requests data from the server running on the DSP or ARM. To get
more accurate benchmark numbers, the number of display updates can be reduced by typing an update
period. For example:

send 192.63.10.5 100

starts the data send test (receive from the DSP or ARM's point of view) with a display update interval of
100 iterations.

echoc 192.63.10.5 100

starts the TCP data echo test (echoes back the characters it receives from the DSP or ARM) with a
display update interval of 100 iterations.

testudp 196.12.1.14
starts an UDP data server that tests the UDP client running on the DSP or ARM.

All the Windows test clients run until a key is pressed, or Control-C in the event of an error (for instance,
trying to connect to a bad IP address).

The Network HelloWorld Example Application

NOTE: The example described in this section has been moved to the NDK Support Package (NSP),
which you must download separately from the NDK. Examples are stored in zip files in the
<NSP_INSTALL_DIR>\packages\tindk\examples directory of the NSP installation.

The helloWorld example is a skeleton application intended to provide the application programmer with a
basic stack setup, to which you can add your code.

Building the Application

The client example is located in the EXAMPLENNETWORK\HELLOWORLD directory off the NDK root. The
application can be rebuilt directly from its project file using Code Composer Studio.

Loading the Application

The application is loaded and executed using Code Composer Studio. The application displays status
messages in CCStudio's standard |0 output window (Stdout).

On a successful execution, one of the status lines printed by the application displays the client's IP
address (either through DHCP or static configuration). Once this address is displayed, the DSP or ARM
responds to requests made to its IP address. When using DHCP, it is possible that the application will be
unable to obtain an IP address from a DHCP server. If so, the application eventually prints a DHCP status
message with the fault condition. Note that all the messages are generated by the main client module in
HELLOWORLD.C.

Testing the Application

Once the application is executing and has printed out its IP address, several tests can be performed.

32

Example Applications SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com The Serial Client Examples

2.4.3.1 HelloWorld

To try out the example, use the Windows test application found in the WINAPPS directory of the NDK
root. The application is command driven and requires a target IP address, such as:

helloWorld 192.63.10.5

This sends Hello World! through a UDP socket connection, and reads the transmitted information by the
stack.

2.5 The Serial Client Examples
The serial client and serial router examples are no longer provided with the NDK and NSP.

SPRU523I-May 2001 —-Revised July 2014 Example Applications 33

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

1 Chapter 3
I TEXAS SPRU523I-May 2001-Revised July 2014

INSTRUMENTS

Network Application Development

Developing a network application with the NDK software is as easy as programming with a standard
sockets API. However, integrating with Code Composer Studio, SYS/BIOS, and system initialization may
be unfamiliar. This chapter describes how to begin developing network applications. It discusses the
issues and guidelines involved in the development of network applications using the NDK libraries.

Topic Page
3.1 Configuring the NDK With XGCONFcuiuiiiiitieieie ettt e et e e eee e e e annns 35
3.2 Configuring the NDK with C Code (Without XGCONF)ccciuiuiiiiiiiiiiiiiiieeieaeeeeeeaen 42
R T O (=T |1 (o = T I T G PP 54
T =11 101 L= T @ Yo PP 54
3.5 Application Debug and TroubleShOOtiNGucuieieieiiieiiii e eeaenns 56
34 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with XGCONF

3.1 Configuring the NDK with XGCONF

To make configuration easier than in previous versions of the NDK, you can now use the XGCONF
configuration tool within CCS to configure use of the NDK. Graphical displays let you enable and set
properties as needed. XGCONF is the same configuration tool used to configure SYS/BIOS. The same
configuration in one project can configure both NDK and SYS/BIOS modules and objects.

We recommend using XGCONF for configuration of NDK applications. If you use this method, many
development tasks that were previously required are automated.

When you create a project using a SYS/BIOS template, the project will contain a configuration file (*.cfg)
that can be edited with the XGCONF graphical editor in CCS. If you checked the boxes to enable use of
the NDK and NSP when you created the project, you can configure your application's use of the NDK
modules. The configuration file is processed during the build to generate code that configures your
application.

In previous versions of the NDK, applications were configured by writing C code that called CfgNew() to
create a configuration database and other Cfg*() functions to add various settings to that configuration
database. In addition, some configuration was done in the linker command file. NDK now has the ability to
configure the NDK modules through the XGCONF configuration editor. (Internally, the same configuration
database is updated when the *.cfg file is built.) Internally, the XGCONF configuration generates C code
that calls into and updates the configuration database used in previous versions of the NDK. In fact, you
can still choose to use the configuration database if you have legacy code. However, you must choose
one method or the other to configure your application.

NOTE: You should not mix configuration methods. If you have legacy NDK applications that use the
old C-based configuration method, you should either continue to use that method or convert
the configuration entirely to an *.cfg file configuration. If a project uses both methods, there
will be unpredictable conflicts between the two configurations.

1. To open XGCONTF, simply double-click the *.cfg file in your application's project. See the steps in
Section 1.7 for how to use XGCONF with the NDK. For more details, see Chapter 2 of the Tl
SYS/BIOS Real-time Operating System User's Guide (SPRUEX3).

2. When XGCONF opens, you see the Welcome sheet for SYS/BIOS. You should see categories for the
NDK Core Stack and your NSP in the Available Products area. If you do not, your CCS Project does
not have NDK support enabled. See Section 1.6.1 to correct this problem. (If the configuration is
shown in a text editor instead of XGCONF, right-click on the .cfg file in the Project Explorer and choose
Open With > XGCONF.)

3. Click the Global item in either the Available Products view (under the NDK Core Stack category) or
in the Outline view

4. You see the Welcome sheet for NDK configuration. This sheet provides an overview of the NDK,
configuration information, and documentation for the NDK.

5. Click the System Overview button to see a handy diagram of the NDK modules you can configure. If
you are editing the configuration of one of the NSP examples, notice the green checkmarks next to
some modules. These checkmarks indicate that support for the modules have been enabled in the
configuration. (If you created a new NDK project as described in Section 1.6, only the Global module is
enabled by default.)

SPRU523I-May 2001 —-Revised July 2014 Network Application Development 35

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spruex3
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
Configuring the NDK with XGCONF www.ti.com
= client.cfg 22 - O
49 NDK - System Overview & || @
Welcome || System Overvie Scheduling || Buffers || Hooks || Debug || Advanced |
Application Layer
i DHCP |
; CLIENT :
HTTP TELNET i
Global :
Metwark i i
Settings i :
) : DHCP i
: Eh= SERVER :
Transport Layer
5 TCP UDP NAT
Network Layer
Lo P ICMP ROUTE
: < |
7] Enable IPv6
Data Link Layer
PPP PPPOE

ndk/Global | SYS/BIOS | Source

The XGCONF configuration automatically performs the following actions for you:
» Generates C code to create and populate a configuration database.
» Generates C code to act as the network scheduling function and to perform network activity.

36 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with XGCONF

The following C functions are generated as a result of using the NDK Global module for configuration. You
should take care not to write application functions with these names.

» ti_ndk_config_Global_stackThread(): The NDK stack thread function.

» NetworkOpen(): function that is called automatically by NC_NetStart().
* NetworkClose(): function that is called automatically by NC_NetStart().
» NetworkIPAddr(): function that is called automatically by NC_NetStart().
» ti_ndk _config_Global_serviceReport(): Service report callback function.

3.1.1 Linked Libraries Configuration

The Global module is required in NDK applications. It determines which core libraries and which flavor of
the NDK stack library are linked with your application. By default, it is also used to configure global stack
settings and generate NDK configuration code. The following libraries are linked in by default via the
Global module:

e stack

e cgi

e console
* hdlc

* netctrl

* nettool
e 0S

e servers

In addition, the appropriate version of the stack library (stk*) is linked in depending on whether you enable
the NAT, PPP, PPPoE modules in your configuration.

Click the System Overview button in Global NDK sheet. Notice that if you have the IP module enabled,
you can check or uncheck the Enable IPv6 box. This setting controls whether the application is linked with
libraries that support IPv4 or IPv6 when you build the application.

3.1.2 Global Scheduling Configuration

In addition to the Welcome tab that described the NDK and the System Overview tab that provides a
diagram of the NDK modules in use, the Global module also provides several tabs that let you set various
configuration options for the NDK stack. The next tab is the Scheduling tab, which lets you control how
Task threads are scheduled and how much stack memory they can use.

3.1.2.1 Network Scheduler Task Options

You can configure the Network Scheduler Task Priority with XGCONF by selecting the NDK's Global
module and then clicking the Scheduling button.

Network Scheduler Task Priority is set to either Low Priority (NC_PRIORITY_LOW) or High Priority
(NC_PRIORITY_HIGH), and determines the scheduler Task’s priority relative to other networking Tasks in
the system.

SPRU523I-May 2001—Revised July 2014 Network Application Development 37

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with XGCONF www.ti.com

3.1.2.2 Priority Levels for Network Tasks

The stack is designed to be flexible, and has a OS adaptation layer that can be adjusted to support any
system software environment that is built on top of SYS/BIOS. Although the environment can be adjusted
to suit any need by adjusting the HAL, NETCTRL and OS modules, the following restrictions should be
noted for the most common environments:

1. The Network Control Module (NETCTRL) contains a network scheduler thread that schedules the
processing of network events. The scheduler thread can run at any priority with the proper adjustment.
Typically, the scheduler priority is low (lower than any network Task), or high (higher than any network
Task). Running the scheduler thread at a low priority places certain restrictions on how a Task can
operate at the socket layer. For example:

« If a Task polls for data using the recv() function in a non-block mode, no data is ever received
because the application never blocks to allow the scheduler to process incoming packets.

e If a Task calls send() in a loop using UDP, and the destination IP address is not in the ARP table,
the UDP packets are not sent because the scheduler thread is never allowed to run to process the
ARP reply.

These cases are seen more in UDP operation than in TCP. To make the TCP/IP behave more like
a standard socket environment for UDP, the priority of the scheduler thread can be set to high
priority. See Chapter 4 for more details on network event scheduling.

2. The NDK requires a re-entrance exclusion methodology to call into internal stack functions. This is
called kernel mode by the NDK, and is entered by calling the function llEnter() and exited via lIExit().
Application programmers do not typically call these functions, but you must be aware of how the
functions work.

By default, priority inversion is used to implement the kernel exclusion methods. When in kernel mode,
a Task’s priority is raised to OS_TASKPRIKERN. Application programmers need to be careful not to
call stack functions from threads with a priority equal to or above that of OS_TASKPRIKERN, as this
could cause illegal reentrancy into the stack's kernel functions. For systems that cannot tolerate priority
restrictions, the NDK can be adjusted to use Semaphores for kernel exclusion. This can be done by
altering the OS adaptation layer as discussed in Section 5.2.3, or by using the Semaphore based
version of the OS library: OS_SEM.

3.1.2.2.1 Stack Sizes for Network Tasks

Care should be taken when choosing a Task stack size. Due to its recursive nature, a Task tends to
consume a significant amount of stack. A stack size of 3072 is appropriate for UDP based
communications. For TCP, 4096 should be used as a minimum, with 5120 being chosen for protocol
servers. The thread that calls the NETCTRL library functions should have a stack size of at least 4096
bytes. If lesser values are used, stack overflow conditions may occur.

3.1.2.3 Priorities for Tasks that Use NDK Functions

In general, Tasks that use functions in the network stack should be of a priority no less than
OS_TASKPRILOW, and no higher than OS_TASKPRIHIGH. For a typical Task, use a priority of
OS_TASKPRINORM. The values for these #define variables can be changed with XGCONF by selecting
the NDK's Global module and then clicking the Scheduling button.

In addition, Task priorities can be altered by adjusting the OSENVCFG structure as described in the Tl
Network Developer's Kit (NDK) API Reference Guide (SPRU524); however, this is strongly discouraged.
When altering the priority band, care must be taken to account for both the network scheduler thread and
the kernel priority.

38 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with XGCONF
3.1.3 Global Buffer Configuration

You can configure the buffers used by the NDK by selecting the NDK's Global module and then clicking
the Buffers button. This page lets you configure the sizes and locations of the NDK Packet Buffer
Manager (PBM) and the Memory Manager Buffer.

The NDK defines some special memory segments via the pragma:

#pragma DATA_SECTION(memory_label,
""'SECTIONNAME")

The NDK sections are defined by default as subsections of the .far memory segment. External memory is
usually used for the .far section. The additional section hames are shown below.

far:NDK_PACKETMEM— This section is defined in the HAL and OS adaptation layers for packet buffer
memory. The size required is normally 32k bytes to 48k bytes. You can configure this buffer with
XGCONF by selecting the NDK's Global module and then clicking the Buffers button.

far:NDK_MMBUFFER— This section is defined by the memory allocation system for use as a
scratchpad memory resource. The size of the memory declared in this section is adjustable, but the
default is less than 48k bytes. You can configure this buffer with XGCONF by selecting the NDK's
Global module and then clicking the Buffers button.

far:NDK_OBJMEM— This section is a catch-all for other large data buffer declarations. It is used by the
example application code and the OS adaptation layer (for print buffers).

You can use the Program.sectMap(] configuration array to configure section placement. For details about
controlling the placement of sections in memory, see Chapter 6 on Memory in the Tl SYS/BIOS Real-time
Operating System User's Guide (SPRUEX3).

The Memory Allocation Support section of the TI Network Developer's Kit (NDK) API Reference Guide
(SPRU524) describes the memory allocation API provided by the OS library for use by the various stack
libraries. Although the stack's memory allocation API has some benefits (it is portable, bucket based to
prevent fragmentation, and tracks memory leaks), the application code is expected to use the standard
malloc()/free() or equivalent Memory module allocation routines provided by SYS/BIOS.

3.1.4 Global Hook Configuration

You can configure callback (hook) functions by selecting the NDK's Global module and then clicking the
Hooks button. You can specify functions to be called at the following times:

» Stack Thread Begin. Runs at the beginning of the generated ti_ndk_config_Global_stackThread()
function, before the call to NC_SystemOpen(). Note that no NDK-related code can run in this hook
function because the NC_SystemOpen() function has not yet run.

» Stack Thread Initialization. Runs in the ti_ndk_config_Global_stackThread() function, immediately
after the function call to create a new configuration, CfgNew().

» Stack Thread Delete. Runs in the ti_ndk_config_Global_stackThread() function, immediately after
exiting from the while() loop that calls NC_NetStart(), but before the calls to CfgFree() and
NC_SystemClose(). (Configuration database calls, such as CfgNew(), are still made internally even if
you use the XGCONF configuration method. These calls are described in Section 3.2.4, but generally
you do not need to be concerned with them if you are using XGCONF for configuration.)

» Status Report. Runs at the beginning of the generated ti_ndk_config_Global_serviceReport() function.

* Network Open. Runs at the beginning of the generated NetworkOpen() function, when the stack is
ready to begin creating application supplied network Tasks. Note that this function is called during the
early stages of stack startup, and must return in order for the stack to resume operations.

» Network Close. Runs at the beginning of the generated NetworkClose() function, when the stack is
about to shut down.

* Network IP Address. Runs at the beginning of the generated NetworkIPAddr() function, when an IP
address is added to or removed from the system.

Hook functions must be defined using the following format:
Void functionName(Void)

SPRU523I-May 2001 —-Revised July 2014 Network Application Development 39

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spruex3
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with XGCONF www.ti.com

3.15

If you specify a hook function in the configuration, but do not define the function in your C code, a linker
error will result.

For example, the following function could be called as the Stack Thread Initialization hook function to
open an SMTP server application:

static SMTP_Handle hSMTP;

//

// SmtpStart

// This function is called after the configuration has been loaded
//

static void SmtpStart()

{

// Create an SMTP server Task
hSMTP = SMTP_open();
T

The above code launches a self-contained application that needs no further monitoring, but the application
must be shut down when the system shuts down. This is done via the Stack Thread Delete callback
function.

//

// SmtpStop

// This function is called when the network is shutting down
//

static void SmtpStop()

{
// Close SMTP server Task

SMTP_close(hSMTP);
}

The above code assumes that the network scheduler Task can be launched whether or not the stack has
a local IP address. This is true for servers that listen on a wildcard address of 0.0.0.0. In some rare cases,
an IP address may be required for Task initialization, or perhaps an IP address on a certain device type is
required. In these circumstances, the Network1PAddr () callback function signals the application that it
is safe to start.

If you are using XGCONF for configuration, saving and reloading configurations via the CfgSave() and
CfgLoad() functions is not automatically supported by XGCONF. However, internally, the same
configuration database used by the Cfg* C functions is populated when the *.cfg file is built. You may want
to use the example functions in Section 3.2.4.4 as hook functions to save the configuration created with
XGCONF and reload if from non-volatile memory on startup.

Global Debug Configuration

There are two ways the stack can be shut down. The first is a manual shutdown that occurs when an
application calls NC_NetStop(). The calling argument to the function is returned to the NETCTRL thread
as the return value from NC_NetStart(). Therefore, for the example code, calling NC_NetStop(1) reboots
the network stack, while calling NC_NetStop(0) shuts down the network stack.

The second way the stack can be shut down is when the stack code detects a debug message above the
level you have set for shutdown control. You can configure this level by selecting the NDK's Global
module and then clicking the Debug button.

The Debug Print Message Level controls which messages are sent to the debug log. For example, if you
set this level to "Warning Messages", then warnings and errors will go to the debug log, but informational
errors will not. By default, all messages are sent to the debug log.

The Debug Abort Message Level controls what types of messages trigger a stack shutdown. For
example, if you set this level to "No Messages", then the stack is never shut down in response to an error.
In this case, your application must detect and respond to messages. By default, only error messages
trigger a stack shutdown.

40

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com

Configuring the NDK with XGCONF

3.1.6 Advanced Global Configuration

You can configure additional global NDK properties by selecting the NDK's Global module and then
clicking the Advance button. You should be careful when setting these properties. In general, it is best to
leave these properties set to their defaults. Some example advanced properties are:

Global.ndkTickPeriod lets you adjust the NDK heartbeat rate. The default is 100 ticks. This matches
the default SYS/BIOS Timer object, which drives the SYS/BIOS Clock and is configured so that 1 tick =
1 millisecond. However, you can configure a new Timer and use that to drive the Clock module. If that
new Timer is not configured such that 1 tick = 1 millisecond, then you should also adjust the NDK tick
period accordingly.

Global.ndkThreadPri and Global.ndkThreadStackSize let you control the priority and stack size of the
main NDK scheduler thread.

Global.netSchedulerOpMode is set to either Polling Mode (NC_OPMODE_POLLING) or Interrupt
Mode (NC_OPMODE_INTERRUPT), and determines when the scheduler attempts to execute.
Interrupt mode is used in the vast majority of applications. Note that polling mode attempts to run
continuously, so when polling is used, a low priority must be used.

Global.multiCoreStackRunMode lets you control which cores (on a C6000 multi-core processor) run
the NDK stack. By default, only core 0 runs the NDK stack. Set this property only if you are an
advanced user of the Inter-Processor Communication (IPC) component.

Global.enableCodeGeneration is set to true by default. If you set it to false, no C code is generated by
the configuration, but the configuration still controls which NDK libraries are linked into the application.

SPRU523I-May 2001—Revised July 2014 Network Application Development 41
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with XGCONF www.ti.com
3.1.7 Adding Clients and Servers

You can easily add support for additional modules to your application by enabling them in the
configuration. For example, the following steps configure a static IP address:

1. Click on the IP module in the System Overview diagram or in the Available Products view.
2. Inthe IP Settings: General Settings page, check the box to Add the IP to my configuration.
3. Uncheck the box to Obtain IP Address Automatically to enable setting a static IP address.

4. Make settings similar to the following in this sheet.

2 *client.cfg &3 = 0O
449 IP Settings - General Settings fy =)

Aodule | | Adwanced |

TheIp module allows you to configure Internet Protocol.

| Add the IP module to my configuration

- General IP Settings ¥ IP Socket Options
Obtain [P Address Automatically Tirne To Live o4

IP Address 192161112 Default Type Of Service 0

IP Mask 255.255.255.0 Maxirnum Mumber Of Connections &
Gateway IP Address 18416101 Connection Timeout &0
Domain Mame demao.net Minimum Send Size (bytes) 2048
IP Start Index 1 Minimum Read Size (bytes) 1
Interface ID 1

Enable Port Forwarding
Enable IP Filtering

Maximurm IP Reassemnbly Time (seconds) 10
Maximum IP Reassembly Size 3020

| Enable Directed Broadcast

SYS/BIOS |NDK |Ip &2 | Source

Figure 3-1. Configuring the IP Module

5. If you want information about a property, point to the field with your mouse cursor. Right-click on any
field to get reference help for all the configurable IP module properties.

6. In addition to the properties listed on the General Settings page, a number of additional properties can
be set if you click the Advanced button.

3.2 Configuring the NDK with C Code (without XGCONF)

If you are not using XGCONF for configuration, you must be aware of the additional development
requirements described in this section.

If you use XGCONF to configure the NDK, you can ignore the following subsections.

42 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

3.21

3.2.2

3.2.3

3.24

Required SYS/BIOS Objects

The NDK is bolted to SYS/BIOS and the hardware via the OS adaptation layer and the HAL layer. These
libraries do require SYS/BIOS objects to be created in order for them to work properly. This requirement
can be altered by altering the OS and HAL layers.

The timer driver in the HAL requires that a SYS/BIOS Timer object be created to drive its main timer. The
Timer must be configured to fire every 100mS, and call the timer driver function lITimerTick().

The Task adaptation module in the OS library requires a hook to be able to save and load private
environment pointers for the NDK. This is done by creating a SYS/BIOS hook. A hook module must be
created to call the OS hook functions NDK_hooklnit() and NDK_hookCreate().

If you use XGCONF to configure the NDK, these objects are all created automatically.

Include Files

If you use XGCONF to configure the NDK, the correct include file directory is automatically referenced by
your CCS project.

If you are using the legacy Cfg*() functions to add settings to the configuration database, you are
responsible for pointing to the correct include file directory. The include directory in the NDK installation is
described in Section 1.5.2. If you are not using XGCONF, you should include the base NDK include
directory in the project build options of the CCStudio project. For example, with the default installation, the
project should be set to include the include file path <NDK_INSTALL_DIR>\packages\ti\ndk\inc.

Library Files

If you use XGCONF to configure the NDK, the correct libraries are linked with the application
automatically.

If you are using the legacy Cfg*() functions to add settings to the configuration database, you are
responsible for linking the correct libraries into your project. If you are not using XGCONF, it is easiest to
add the desired library files directly into the CCS project. This way, the linker will know where to find them.

System Configuration

If you are not using XGCONF, you must create a system configuration in order to be able to use the
NETCTRL API. The configuration is a handle-based object that holds a multitude of system parameters.
These parameters control the operation of the stack. Typical configuration parameters include:

* Network Hostname

* IP Address and Subnet Mask

» |P Address of Default Routes

» Services to be Executed (DHCP, DNS, HTTP, etc.)

» IP Address of name servers

» Stack Properties (IP routing, socket buffer size, ARP timeouts, etc.)

The process of creating a configuration always starts out with a call to CfgNew() to create a configuration

handle. Once the configuration handle is created, configuration information can be loaded into the handle
in bulk or constructed into it one entry at a time.

Loading a configuration in bulk requires that a previously constructed configuration has been saved to
non-volatile storage. Once the configuration is in memory, the information can be loaded into the
configuration handle by calling CfgLoad(). Another option is to manually add individual items to the
configuration for the various desired properties. This is done by calling CfgAddEntry() for each individual
entry to add.

The exact specification of the stack's configuration API appears in the Initialization and Configuration
section of the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524). Some additional
programming examples are provided in the Section 3.2.4.1 section of this document, and in the NDK
example programs.

SPRU523I-May 2001—Revised July 2014 Network Application Development 43
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with C Code (without XGCONF) www.ti.com

3.2.4.1 Configuration Examples

This section contains some sample code for constructing configurations without the use of XGCONF.

3.2.4.1.1 Constructing a Configuration for a Static IP and Gateway

The NetworkTest() function in this example consists of the main initialization thread for the stack. It
creates a new configuration, adds a static IP address, subnet, and default gateway, and then boots up the
stack.

In this case, it is assumed that the addressing and name information is stored in non-volatile memory.
Here, we have defined some strings to hold the information. For example:

char *Local IPAddr

""194.16.11.12";

char *LocallPMask = '"'255.255.255.0";
char *GatewaylP = "194.16.10.1";
char *HostName = "testhost";

char *DomainName = *‘demo.net";

The code below performs the following operations :

1.
2.

Call NC_SystemOpen() and Create a new configuration.

Create and add a configuration entry for the local IP address and subnet using the supplied
LocallPAddr, LocallPMask, and DomainName strings.

3. Create and add a configuration entry for the local hosthame using the Hostname string.
4. Create and add a default route to the router supplied in the GatewayIP string.
5. Boot the system using this configuration by calling NC_NetStart().
6. Free the configuration on system shutdown (when NC_NetStart() returns) and call NC_SystemClose().
int NetworkTest()
{
int rc;
CI_IPNET NA;
CI_ROUTE RT;
HANDLE hCfg;
//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{
printf("'NC_SystemOpen Failed (%d)\n",rc);
for(;:):;
}
//
// Create and build the system configuration from scratch.
//
// Create a new configuration
hCfg = CfgNew();
if('hCfg)
printf(""Unable to create configuration\n');
goto main_exit;
}
// We"d better validate the length of the supplied names
iT(strlen(DomainName) >= CFG_DOMAIN_MAX ||
strlen(HostName) >= CFG_HOSTNAME_MAX)
{
printf(*'Names too long\n');
goto main_exit;
}
44 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

// Manually configure our local IP address
bzero(&NA, sizeof(NA));

NA.IPAddr = inet_addr(LocalIPAddr);
NA.1PMask = inet_addr(LocallPMask);
strcpy(NA.Domain, DomainName);
NA_NetType = O;

// Add the address to interface 1
CfgAddEntry(hCfg, CFGTAG_IPNET, 1, O,
sizeof(CI_IPNET), (UINT8 *)&NA, 0);

// Add our hostname
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, O,
strlen(HostName), (UINT8 *)HostName, 0);

// Add the default gateway. Since it is the default, the
// destination address and mask are both zero (we go ahead
// and show the assignment for clarity).

bzero(&RT, sizeof(RT));

RT.1PDestAddr = O;

RT.IPDestMask = O;

RT. 1PGateAddr inet_addr(GatewaylP);

// Add the route
CfgAddEntry(hCfg, CFGTAG_ROUTE, O, O, sizeof(CI_ROUTE), (UINT8 *)&RT, 0);

//

// Boot the system using this configuration

//

// We keep booting until the function returns less than 1. This allows
// us to have a "reboot" command.

//

do

{
rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(C rc > 0);

// Delete Configuration
CfgFree(hCfg);

// Close the 0S

main_exit:
NC_SystemClose();
return(0);

3

3.2.4.1.2 Constructing a Configuration using the DHCP Client Service

In this section we take the initialization example of the previous section and alter it to instruct the stack to
use the DHCP (Dynamic Host Configuration Protocol) client service to perform its IP address
configuration.

Since DHCP provides the IP address, route, domain, and domain name servers, you only need to provide
the hostname. The NetworkTest() function would look as follows (see the Tl Network Developer's Kit
(NDK) API Reference Guide (SPRU524) for more details on using DHCP).

The code below performs the following operations :

1. Call NC_SystemOpen() and create a new configuration.
2. Create and add a configuration entry specifying the DHCP client service to be used.
3. Create and add a configuration entry for the local hostname using the Hostname string.
4. Boot the system using this configuration by calling NC_NetStart().
5. Free the configuration on system shutdown (when NC_NetStart() returns) and call NC_SystemClose().
char *HostName = "testhost";
SPRU523I-May 2001—Revised July 2014 Network Application Development 45

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

Configuring the NDK with C Code (without XGCONF)

13 TEXAS
INSTRUMENTS

www.ti.com

int NetworkTest()

{

int rc;
C1_SERVICE_DHCPC dhcpc;
HANDLE hCfg;

//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!I
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{
printf("'NC_SystemOpen Failed (%d)\n",rc);
for(;:);
}

//
// Create and build the system configuration from scratch.
//

// Create a new configuration hCfg = CfgNew();
if('hCfg)
{
printf(*"Unable to create configuration\n');
goto main_exit; }

// We"d better validate the length of the supplied names
if(strlen(HostName) >= CFG_HOSTNAME_MAX)
{

printf(*'Names too long\n");

goto main_exit; }

// Specify DHCP Service on interface 1

bzero(&dhcpc, sizeof(dhcpc));

dhcpc.cisargs.Mode = CIS_FLG_IFIDXVALID;

dhcpc.cisargs.Ifldx = 1;

dhcpc.cisargs.pCbSrv = &ServiceReport;

CfgAddEntry(hCfg, CFGTAG_SERVICE, CFGITEM_SERVICE_DHCPCLIENT, O,
sizeof(dhcpc), (UINT8 *)&dhcpc, 0);

// Add our hostname
CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_HOSTNAME, O,
strlen(HostName), (UINT8 *)HostName, 0);

//

// Boot the system using this configuration

//

// We keep booting until the function returns less than 1. This allows
// us to have a "reboot"™ command.

//

do

{
rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr)
} while(C rc > 0);

// Delete Configuration
CfgFree(hCfg);

// Close the 0S
main_exit:

NC_SystemClose();
return(0);

46

Network Application Development

Copyright © 2001-2014, Texas Instruments Incorporated

SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

3.2.4.1.3 Using a Statically Defined DNS Server

The area of the configuration system that is used by the DHCP client can be difficult. When the DHCP
client is in use, it has full control over the first 256 entries in the system information portion of the
configuration system. In some rare instances, it may be useful to share this space with DHCP.

For example, assume a network application needs to manually add the IP address of a Domain Name
System (DNS) server to the system configuration. When DHCP is not being used, this code is simple. To
add a DNS server of 128.114.12.2, the following code would be added to the configuration build process
(before calling NC_NetStart()).

IPN IPTmp;

// Manually add the DNS server *'128.114.12.2"
IPTmp = inet_addr("'128.114.12.2");

CfgAddEntry(hCfg, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,
0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0);

Note that the CLIENT example program in the example applications uses a form of this code. Now, when
a DHCP client is used, it clears and resets the contents of the part of the configuration it controls. This
includes the DNS server addresses. Therefore, if the above code was added to an application that used
DHCP, the entry would be cleared whenever DHCP executed a status update.

To share this configuration space with DHCP (or to read the results of a DHCP configuration), the DHCP
status callback report codes must be used. The status callback function was introduced in Section 3.2.5.5.
When DHCP reports a status change, the application knows that the DHCP portion of the system
configuration has been reset.

The following code also appears in the CLIENT example program. This code manually adds a DNS server
address when the DHCP client is in use. Note that this code is part of the standard service callback
function that is supplied to the configuration when the DHCP client service is specified.

//

// Service Status Reports

//

static char *TaskName[] = { "Telnet","HTTP","NAT",""DHCPS","'DHCPC","'DNS" };

static char *ReportStr[] { "","Running",""Updated", " "Complete", " Fault" };

static char *StatusStr[] { "Disabled","Waiting","IPTerm", "Failed","Enabled" };

static void ServiceReport(uint Item, uint Status, uint Report, HANDLE h)
{
printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[ltem-1], StatusStr[Status], ReportStr[Report/256], Report&OxFF);

// Example of adding to the DHCP configuration space
//
// When using the DHCP client, the client has full control over access
// to the first 256 entries in the CFGTAG_SYSINFO space. Here, we want
// to manually add a DNS server to the configuration, but we can only
// do it once DHCP has finished its programming.
//
if(Item == CFGITEM_SERVICE_DHCPCLIENT &&

Status == CIS_SRV_STATUS_ENABLED &&

(Report == (NETTOOLS_STAT_RUNNING |DHCPCODE_IPADD) ||

Report == (NETTOOLS_STAT_RUNNING|DHCPCODE_IPRENEW)))

IPN IPTmp;

// Manually add the DNS server when specified. If the address
// string reads "0.0.0.0", IPTmp will be set to zero.

IPTmp = inet_addr(DNSServer);

ifC IPTmp)

CfgAddEntry(0, CFGTAG_SYSINFO, CFGITEM_DHCP_DOMAINNAMESERVER,
0, sizeof(IPTmp), (UINT8 *)&IPTmp, 0);

}

SPRU523I-May 2001—Revised July 2014 Network Application Development

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

47

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with C Code (without XGCONF) www.ti.com

3.2.4.2 Controlling NDK and OS Options via the Configuration

Along with specifying IP addresses, routes, and services, the configuration system allows you to directly
manipulate the configuration structures of the OS adaptation layer and the NDK. The OS configuration
structure is discussed in the Operating System Configuration section of the Tl Network Developer's Kit
(NDK) API Reference Guide (SPRU524), and the NDK configuration structure is discussed in the
Configuring the Stack section in the appendices. The configuration interface to these internal structures is
consolidated into a single configuration API as specified in the Initialization and Configuration section.

Although the values in these two configuration structures can be modified directly, adding the parameters
to the system configuration is useful for two reasons. First, it provides a consistent API for all network
configuration, and second, if the configuration load and save feature is used, these configuration
parameters are saved along with the rest of the system configuration.

As a quick example of setting an OS configuration option, the following code makes a change to the
debug reporting mechanism. By default, all debug messages generated by the NDK are output to the
CCsStudio output window. However, the OS configuration can be adjusted to print only messages of a
higher severity level, or to disable the debug messages entirely.

Most of the example applications included with the NDK will raise the threshold of printing debug
messages from the INFO level to the WARNING level. Here is how it appears in the source code:

// We do not want to see debug messages less than WARNINGS
rc = DBG_WARN;

CfgAddEntry(hCfg, CFGTAG_OS, CFGITEM_OS_DBGPRINTLEVEL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0);

3.2.4.3 Shutdown

There are two ways the stack can be shut down. The first is a manual shutdown that occurs when an
application calls NC_NetStop(). Here, the calling argument to the function is returned to the NETCTRL
thread as the return value from NC_NetStart(). Therefore, for the example code, calling NC_NetStop(1)
reboots the network stack, while calling NC_NetStop(0) shuts down the network stack.

The second way the stack can be shut down is when the stack code detects a fatal error. A fatal error is
an error above the fatal threshold set in the configuration. This type of error generally indicates that it is
not safe for the stack to continue. When this occurs, the stack code calls NC_NetStop(-1). It is then up to
you to determine what should be done next. The way the NC_NetStart() loop is coded determines if the
system will shut down (as in the example), or simply reboot.

Note that the critical threshold to shut down can also be disabled. The following code can be added to the
configuration to disable error-related shutdowns:

// We do not want the stack to abort on any error
uint rc = DBG_NONE;

CfgAddEntry(hCfg, CFGTAG_OS, CFGITEM_OS_DBGABORTLEVEL,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8 *)&rc, 0);

3.2.4.4 Saving and Loading a Configuration

Once a configuration is constructed, the application may save it off into non-volatile RAM so that it can be
reloaded on the next cold boot. This is especially useful in an embedded system where the configuration
can be modified at runtime using a serial cable, Telnet, or an HTTP browser.

If you are using XGCONF for configuration, saving and reloading configurations is not automatically
supported by XGCONF. However, internally, the same configuration database used by the Cfg* C
functions is populated when the *.cfg file is built. You may want to use the functions in the following
subsections as hook functions to save the configuration created with XGCONF and reload if from non-
volatile memory on startup.

48

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

3.2.4.4.1 Saving the Configuration

To save the configuration, convert it to a linear buffer, and then save the linear buffer off to storage. Here
is a quick example of a configuration save operation. Note the MyMemorySave () function is assumed to
save off the linear buffer into non-volatile storage.

int SaveConfig(HANDLE hCfg)

{
UINT8 *pBuf;
int size;
// Get the required size to save the configuration
CfgSave(hCfg, &size, 0);
if(size && (pBuf = malloc(size)))
{
CfgSave(hCfg, &size, pBuf);
MyMemorySave(pBuf, size);
Free(pBuf);
return(l);
return(0);
3

3.2.4.4.2 Loading the Configuration

Once a configuration is saved, it can be loaded from non-volatile memory on startup. For this final
NetworkTest() example, assume that another Task has created, edited, or saved a valid configuration to
some storage medium on a previous execution. In this network initialization routine, all that is required is
to load the configuration from storage and boot the NDK using the current configuration.

For this example, assume that the function MyMemorySize() returns the size of the configuration in a
stored linear buffer and that MyMemoryLoad()loads the linear buffer from non-volatile storage.

int NetworkTest()
{
int rc;
HANDLE hCfg;
UINT8 *pBuf;
Int size;

//
// THIS MUST BE THE ABSOLUTE FIRST THING DONE IN AN APPLICATION!!
//
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{
printf(*'NC_SystemOpen Failed (%d)\n",rc);
for(;;);
3

//
// First load the linear memory block holding the configuration
//

// Allocate a buffer to hold the information
size = MyMemorySize();
if(Isize)

goto main_exit;

pBuf = malloc(size);
if(pBuf)
goto main_exit;

// Load from non-volatile storage
MyMemoryLoad(pBuf, size);

SPRU523I-May 2001—Revised July 2014 Network Application Development 49

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
Configuring the NDK with C Code (without XGCONF) www.ti.com
//
// Now create the configuration and load it
//

3.25

// Create a new configuration
hCfg = CfgNew();

if('hCfg)

{
printf(*"Unable to create configuration\n');
free(pBuf);
goto main_exit;

}

// Load the configuration (and then we can free the buffer)
CfgLoad(hCfg, size, pBuf);

mmFree(pBuf);

//

// Boot the system using this configuration

//

// We keep booting until the function returns less than 1. This allows
// us to have a "reboot" command.

//

do

{
rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} while(rc > 0);

// Delete Configuration
CfgFree(hCfg);

// Close the 0S

main_exit:
NC_SystemClose();
return(0);

}

NDK Initialization

Before a sockets application like the example shown in Section 3.4 can be executed, the stack must be
properly configured and initialized. To facilitate a standard initialization process, and yet allow
customization, source code to the network control module (NETCTRL) is included in the NDK. The
NETCTRL module is the center of the stack's initialization and event scheduling. A solid comprehension of
NETCTRL's operation is essential for building a solid networking application. This section describes how
to use NETCTRL in an networking application. An explanation of how NETCTRL works and how it can be
tuned is provided in Chapter 4.

The process of initialization of the NDK is described in detail in Chapter 4 of the TI Network Developer's
Kit (NDK) APl Reference Guide (SPRU524). This section closely mirrors the initialization procedure
described in the NDK Software Directory of that document. Here we describe the information with a more
practical slant. Programmers concerned with the exact API of the functions mentioned here should refer to
the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524) for a more precise description.

3.2.5.1 The NETCTRL Task Thread

If you are not using XGCONF, your application must create a Task thread that contains a call to
NC_NetStart(), which in turn runs the network scheduler function. NSP example applications that do not
use XGCONF provide this thread in their main C source file. In NSP example applications that do use
XGCONF, this thread is generated, and the code that calls NC_NetStart() is in the generated C file (for
example, client_p674.c for the evmOMAPL138 client example).

50

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

This Task thread (called the scheduler thread) is the thread in which nearly all the NETCTRL activity takes
place. This thread acts as the program’s entry-point and performs initialization actions. Later, it becomes
the NETCTRL scheduler thread. Therefore, control of this thread is not returned to the caller until the stack
has been shut down. Application Tasks—network-oriented or otherwise—are not executed within this
thread.

3.2.5.2 Pre-Initialization

If you are not using XGCONF, your application must call the primary initialization function
NC_SystemOpen() before calling any other of the stack API functions. This initializes the stack and the
memory environment used by all the stack components. Two calling arguments, Priority and OpMode,
indicate how the scheduler should execute. For example, the example applications included in the NSP
contain the following code:
7/
// THIS IS THE FIRST THING DONE IN AN APPLICATION!!
7/
rc = NC_SystemOpen(NC_PRIORITY_LOW, NC_OPMODE_INTERRUPT);
if(rc)
{

printf("'NC_SystemOpen Failed (%d)\n",rc);

for(;:);

3.2.5.3 Invoking New Network Tasks and Services

Some standard network services can be specified in the NDK configuration; these are loaded and
unloaded automatically by the NETCTRL module. Other services, including those written by an
applications programmer should be launched from callback functions.

If you are not using XGCONF, you can use the Start callback function supplied to NC_NetStart() to add a
callback function. As an example of a network start callback, the NetworkStart() function below opens a
user SMTP server application by calling an open function to create the main application thread.

static SMTP_Handle hSMTP;

//
// NetworkStart
//
// This function is called after the configuration has booted
//
static void NetworkStart()
{
// Create an SMTP server Task
hSMTP = SMTP_open();
3

The above code launches a self contained application that needs no further monitoring, but the application
must be shut down when the system shuts down. This is done via the NetworkStop() callback function.
Therefore, the NetworkStop() function must undo what was done in NetworkStart().

//
// NetworkStop
//
// This function is called when the network is shutting down
//
static void NetworkStop()
{
// Close our SMTP server Task
SMTP_close(hSMTP);

SPRU523I-May 2001—Revised July 2014 Network Application Development 51

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Configuring the NDK with C Code (without XGCONF) www.ti.com

The above example assumes that the network scheduler Task can be launched whether or not the stack
has a local IP address. This is true for servers that listen on a wildcard address of 0.0.0.0. In some rare
cases, an IP address may be required for Task initialization, or perhaps an IP address on a certain device
type is required. In these circumstances, the Network1PAddr () callback function signals the application

that it is safe to start.

The following example illustrates the calling parameters to the Network1PAddr () callback. Note that the
IFIndexGetHandle() and IFGetType() functions can be called to get the type of device (HTYPE_ETH or
HTYPE_PPP) on which the new IP address is being added or removed. This example just prints a
message. The most common use of this callback function is to synchronize network Tasks that require a
local IP address to be installed before executing.

7/

// NetworkIPAddr

// This function is called whenever an IP address binding is

// added or removed from the system.

//
static void NetworkIPAddr(IPN IPAddr, uint Ifldx, uint fAdd)
{
IPN IPTmp;
if(fAdd)
printf("Network Added: ");
else

printf("'Network Removed: ');

// Print a message
IPTmp = ntohl(IPAddr);

printf(C 1F-%d:%d.%d.%d_%d\n", 1¥ldx, (UINT8)(IPTmp>>24)&0xFF,
(UINT8) (IPTmp>>16)&0xFF, (UINT8) (IPTmp>>8)&0xFF, (UINT8) IPTmp&OXFF);

3.2.5.4 Network Startup

If you are not using XGCONF, your application must call the NETCTRL function NC_NetStart() to invoke
the network scheduler after the configuration is loaded. Besides the handle to the configuration, this
function takes three additional callback pointer parameters; a pointer to a Start callback function, a Stop
function, and a IP Address Event function.

The first two callback functions are called only once. The Start callback is called when the system is
initialized and ready to execute network applications (note there may not be a local IP network address
installed yet). The Stop callback is called when the system is shutting down and signifies that the stack will
soon not be able to execute network applications. The third callback can be called multiple times. It is
called when a local IP address is either added or removed from the system. This can be useful in
detecting new DHCP or PPP address events, or just to record the local IP address for use by local
network applications. The call to NC_NetStart() will not return until the system has shut down, and then it
returns a shutdown code as its return value. How the system was shut down may be important to
determine if the stack should be rebooted. For example, a reboot may be desired in order to load a new
configuration. The return code from NC_NetStart() can be used to determine if NC_NetStart() should be
called again (and hence perform the reboot).

For a simple example, the following code continuously reboots the stack using the current configuration
handle if the stack shuts down with a return code greater than zero. The return code is set when the stack
is shutdown via a call to NC_NetStop().

//

// Boot the system using our configuration

//

// We keep booting until the function returns 0. This allows
// us to have a "'reboot" command.

//

do

{
rc = NC_NetStart(hCfg, NetworkStart, NetworkStop, NetworkIPAddr);
} whileC rc > 0);

52

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Configuring the NDK with C Code (without XGCONF)

3.2.5.5 Adding Status Report Services

The configuration system can also be used to invoke the standard network services found in the
NETTOOLS library. The services available to network applications using the NDK are discussed in detail
in Chapter 4 of the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524). This section
summarized the services described in that chapter.

When using the NETTOOLS library, the NETTOOLS status callback function is introduced. This callback
function tracks the state of services that are enabled through the configuration. There are two levels to the
status callback function. The first callback is made by the NETTOOLS service. It calls the configuration
service provider when the status of the service changes. The configuration service provider then adds its
own status to the information and calls back to the application's callback function. A pointer to the
application's callback is provided when the application adds the service to the system configuration.

If you are not using XGCONF, the basic status callback function that is used in all the examples is as
follows:

//

// Service Status Reports

//

static char *TaskName[] = { "Telnet","HTTP",""NAT","'DHCPS","'DHCPC',"'DNS" };

static char *ReportStr[] = { "","Running”,"Updated",""Complete","Fault" };

static char *StatusStr[] = { "Disabled"”, "Waiting"”, "IPTerm", "Failed"”, "Enabled" }

static void ServiceReport(uint Item, uint Status, uint Report, HANDLE h)

{
printf("Service Status: %-9s: %-9s: %-9s: %03d\n",
TaskName[Item-1], StatusStr[Status], ReportStr[Report/256], Report&0OxFF);

}

Note that the names of the individual services are listed in the TaskName[] array. This order is specified
by the definition of the service items in the configuration system and is constant. See the file
INC\NETTOOLS\NETCFG.H for the physical declarations.

Note that the strings defining the master report code are listed in the ReportStr[] array. This order is
specified by the NETTOOLS standard reporting mechanism and is constant. See the file
INC\INETTOOLS\NETTOOLS.H for the physical declarations.

Note that the strings defining the Task state are defined in the StatusStr[] array. This order is specified
by the definition of the standard service structure in the configuration system. See the file
INC\NETTOOLS\NETCFG.H for the physical declarations.

The last value this callback function prints is the least significant 8 bits of the value passed in Report. This
value is specific to the service in question. For most services this value is redundant. Usually, if the
service succeeds, it reports Complete, and if the service fails, it reports Fault. For services that never
complete (for example, a DHCP client that continues to run while the IP lease is active), the upper byte of
Report signifies Running and the service specific lower byte must be used to determine the current state.

For example, the status codes returned in the 8 least significant bits of Report when using the DHCP
client service are:

DHCPCODE_ IPADD Client has added an IP address
DHCPCODE__ IPREMOVE IP address removed and CFG erased
DHCPCODE__ IPRENEW IP renewed, DHCP config space reset

These DHCP client specific report codes are defined in INC\NETTOOLS\INC\DHCPIF.H. In most cases,
you do not have to examine state report codes down to this level of detail, except in the following case.

When using the DHCP client to configure the stack, the DHCP client controls the first 256 entries of the

CFGTAG_SYSINFO tag space. These entries correspond to the 256 DHCP option tags. An application

may check for DHCPCODE_IPADD or DHCPCODE_IPRENEW return codes so that it can read or alter
information obtained by DHCP client. This is discussed further in Section 3.2.4.1.2.

SPRU523I-May 2001 —-Revised July 2014 Network Application Development 53

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Creating a Task www.ti.com

3.3

3.3.1

3.4

Creating a Task

The process of creating a sockets application begins with the creation of a SYS/BIOS Task thread. You
can use XGCONF to statically configure Tasks or use the standard SYS/BIOS API or the provided Task
abstraction to dynamically create Tasks. For example, the following C code creates a basic Task:
Task_Params taskParams;

Task_Handle hMyTask;

Error_Block eb;

Error_init(&eb);

/* Create a Task with priority 5 */
Task_Params_init(&taskParams);
taskParams.stackSize = 4096;
taskParams.priority = 5;
hMyTask = Task_create((Task_FuncPtr)entrypoint, &taskParams, &eb);
if (hMyTask == NULL) {
System_abort(*'Task create failed");
b

The same Task can be created via the TaskCreate() function in the Task abstraction API. The abstracted
function is a little more restrictive. It creates a Task thread with exactly 3 parameters (they do not all have
to be used). For example, the following call would create a Task similar to that shown above:

hMyTask = TaskCreate(entrypoint, "TaskName'™, OS_TASKPRINORM, stacksize, argl, arg2, arg3);
In both cases, hMyTask is a handle to a SYS/BIOS Task thread.

Initializing the File Descriptor Table

Each Task thread that must use the sockets or file API included in the stack must allocate a file descriptor
table and associate the table with the Task handle. This process is described fully in the Tl Network
Developer's Kit (NDK) API Reference Guide (SPRU524). Basically, a call to fdOpenSession() must be
performed before any file descriptor oriented functions are used, and then fdCloseSession() is called when
they are no longer required.

Example Code

The following is an echo sockets application for SYS/BIOS. It is adapted from code in the
<NDK_INSTALL_DIR>\packages\ti\ndk\tools\console\conecho.c file. This code creates a socket, connects
to port 7, sends some data, and then tries to receive it back.

The lines of code in boldface represent new functions required to provide sockets functionality to
SYS/BIOS. The functions in bold italics are standard, but their names have been adjusted to avoid
naming conflicts with the runtime support library provided by TI's code generation tools. The remainder of
the functions should be familiar to Berkeley sockets programmers. All of these functions are described in
detail in the TI Network Developer's Kit (NDK) API Reference Guide (SPRU524).

void EchoTcp(IPN IPAddr)

{
SOCKET s = INVALID_SOCKET;
struct sockaddr_in sinl;
int I;
char *pBuf = 0;
struct timeval timeout;

// Allocate the file descriptor environment for this Task
fdOpenSession((HANDLE)Task_self());

printf(""\n== Start TCP Echo Client Test ==\n"");

// Create test socket

s = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

if(s == INVALID_SOCKET)

{
printf("failed socket create (%d)\n",fdError());
goto leave;

54

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com

Example Code

}

// Prepare address for connect

bzero(&sinl, sizeof(struct sockaddr_in));
sinl.sin_family = AF_INET;
sinl.sin_addr.s_addr = IPAddr;
sinl.sin_port = htons(7);

// Configure our Tx and Rx timeout to be 5 seconds
timeout.tv_sec = 5;
timeout.tv_usec = 0;

setsockopt(s, SOL_SOCKET, SO_SNDTIMEO, &timeout, sizeof(timeout));
setsockopt(s, SOL_SOCKET, SO_RCVTIMEO, &timeout, sizeof(timeout));

// Connect socket
if(connect(s, (PSA) &sinl, sizeof(sinl)) < 0)
{
printf("failed connect (%d)\n",fdError(Q));
goto leave;

}

// Allocate a working buffer
if('(pBuf = malloc(4096)))

printf("failed temp buffer allocation\n");
goto leave;

}

// Fill buffer with a test pattern
for(1=0; i<4096; 1++)
*(pBuf+l) = (char)l;

// Send the buffer

if(send(s, pBuf, 4096, 0) <0)

{
printf(“'send failed (%d)\n",fdError());
goto leave;

}

// Try and receive the test pattern back
I = recv(s, pBuf, 4096, MSG_WAITALL);
fC1<0)

i

{
printf("'recv failed (%d)\n",fdError());
goto leave;

b

// Verify reception size and pattern

if(C I = test)

{

printf(“'received %d (not %d) bytes\n",i, test);
goto leave;
3
for(1=0; i<test; I++)
if(*(pBuf+l) I= (char)l)
{
printf("'verify failed at byte %d\n",1);
break;

}

// If here, the test passed
if(I==test)
printf(“'passed\n™);

leave:
if(pBuf)
free(pBuf);
if(s 1= INVALID_SOCKET)

fdClose(s);

SPRU523I-May 2001—Revised July 2014
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

Network Application Development

55

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Application Debug and Troubleshooting www.ti.com

printf(*'== End TCP Echo Client Test ==\n\n"");

// Free the file descriptor environment for this Task
fdCloseSession((HANDLE)Task_self());

Task_exit();

NOTE: The example code above only illustrates IPv4 sockets (AF_INET family). For sample
illustration of IPv6 sockets, refer to example code provided in the conipvé.c file packaged as
a part of the client example project for your platform.

3.5 Application Debug and Troubleshooting

Although there is certainly no instant or easy way to debug an NDK application, the following sections

provide a quick description of some of the potential problem areas. Some of these topics are discussed

elsewhere in the documentation as well.
3.5.1 Troubleshooting Common Problems

One of the most common support requests for the NDK deals with the inability to either send or receive

network packets. This may also take the form of dropping packets or general poor performance. There are

many causes for this type of behavior. For potential scheduling issues, see Section 3.1.2.2. It is also
recommended that application programmers fully understand the workings of the NETCTRL module. For

this, see Chapter 4.

Here is a quick list. If you are using XGCONF for configuration, many of the potential configuration

problems cannot occur.

All socket calls return “error” (-1)

e Make sure there is a call to fdOpenSession() in the Task before it uses sockets, and a call to
fdCloseSession() when the Task terminates.

No link indication, or will not re-link when cable is disconnected and reconnected.

e Make sure there is a Timer object in your SYS/BIOS configuration that is calling the driver function
[ITimerTick() every 100 ms.

Not receiving any packets — ever

* When polling for data by making recv(), fdPoll(), or fdSelect() calls in a non-blocking fashion, make
sure you do not have any scheduling issues. When the NETCTRL scheduler is running in low priority,
network applications are not allowed to poll without blocking. Try running the scheduler in high priority
(via NC_SystemOpen()).

» The NDK assumes there is some L2 cache. If the DSP or ARM is configured to all internal memory
with nothing left for L2 cache, the NDK drivers will not function properly.

Performance is sluggish. Very slow ping response.

* Make sure there is a Timer object in your SYS/BIOS configuration that is calling the driver function
[ITimerTick() every 100 ms.

» If porting an Ethernet driver and running NETCTRL in interrupt mode, make sure your device is
correctly detecting interrupts. Make sure the interrupt polarity is correct.

UDP application drops packets on send() calls.

» If sending to a new IP address, the very first send may be held up in the ARP layer while the stack
determines the MAC address for the packet destination. While in this mode, subsequent sends are
discarded.

* When using UDP and sending multiple packets at once, make sure you have plenty of packet buffers
available (see Section 5.3.1).

» Verify you do not have any scheduling issues. Try running the scheduler in high priority (via
NC_SystemOpen()).

UDP application drops packets on recv() calls.

56 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com

Application Debug and Troubleshooting

Make sure you have plenty of packet buffers available (see Section 5.3.1).

Make sure the packet threshold for UDP is high enough to hold all UDP data received in between calls
to recv() (see CFGITEM_IP_SOCKUDPRXLIMIT in the NDK Programmer’s Reference Guide).

Verify you do not have any scheduling issues. Try running the scheduler in high priority (via
NC_SystemOpen()).

It is possible that packets are being dropped by the Ethernet device driver. Some device drivers have
adjustable RX queue depths, while others do not. Refer to the source code of your Ethernet device
driver for more details (device driver source code is provided in NDK Support Package for your
hardware platform).

Pings to NDK target Fails Beyond 3012 Size

The NDK's default configuration allows reassembly of packets up to "3012" bytes. To be able to ping
bigger sizes, the stack needs to be reconfigured as follows:

Change the "MMALLOC_MAXSIZE" definition in "pbm.c" file. (i.e. #define MMALLOC_MAXSIZE
65500) and rebuild the library.

Increase the Memory Manager Buffer Page Size in the Buffers tab of the Global configuration.
Increase the Maximum IP Reassembly Size property of the IP module configuration.

Sending and Receiving UDP Datagrams over MTU Size

The size of sending and receiving UDP datagrams are dependent on the following NDK configuration
options, socket options, and OSAL layer definitions:

NDK Configuration Options:

— Increase the Minimum Send Size property of the IP module socket configuration. See the Tl
Network Developer's Kit (NDK) API Reference Guide (SPRU524).

— Increase the Minimum Read Size property of the IP module socket configuration.

— If you are not using XGCONF for configuration, you can configure these IP module properties by
using the following C code:

uint tmp = 65500;

// configure NDK

CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_IPREASMMAXSIZE,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8*) &tmp, 0);

CfgAddEntry(hCfg, CFGTAG_IP, CFGITEM_IP_SOCKUDPRXLIMIT,
CFG_ADDMODE_UNIQUE, sizeof(uint), (UINT8*) &tmp, 0);

// set socket options
setsockopt(s, SOL_SOCKET, SO_RCVBUF, &tmp, sizeof(int));
setsockopt(s, SOL_SOCKET, SO_SNDBUF, &tmp, sizeof(int));

Socket Options:

— SO_SNDBUF: See the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524)
— SO_RCVBUEF - See the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524)
OSAL Layer Definitions:

— Change the "MMALLOC_MAXSIZE" definition in "pbm.c" file. (i.e. #define MMALLOC_MAXSIZE
65500) and rebuild the library

— Increase the Memory Manager Buffer Page Size in the Buffers tab of the Global configuration.

— If you are not using XGCONF for configuration, you can edit the MMALLOC MAXSIZE definition in
the pbm.c file and RAW_PAGE_SIZE definition in the mem.c file. Then rebuild the appropriate
OSAL library in <NDK_INSTALL_DIR>\packages\ti\ndk\os\lib.

Timestamping UDP Datagram Payloads

The NDK allows the application to update the payload of UDP datagrams. The typical usage of this is
to update the timestamp information of the datagram. This way, transmitting and receiving ends can
more accurately adjust delivery delays depending on changing run-time characteristic of the system.

On the transmitting end:
The application can register a call-out function per socket basis by using the "setsockopt()" function.

SPRU523I-May 2001—Revised July 2014 Network Application Development 57
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Application Debug and Troubleshooting www.ti.com

3.5.2

3.5.3

» The call-out function is called by the stack before inserting the datagram into driver's transmit queue.
» ltis the call-out function's responsibility to update the UDP checksum information in the header.

* The following code section is a sample of how to control it:

void myTxTimestampFxn(UINT8 *plpHdr) {

}
setsockopt(s, SOL_SOCKET, SO_TXTIMESTAMP, (void*) myTxTimestampFxn, sizeof(void*));

On the receiving end:

» The application can register a call-out function per interface basis by using the "EtherConfig()" function.
It is set in the "NC_NetStart()" function of "netctrl.c".

» The call-out function is called by the stack scheduler just before processing the packet.

» ltis the call-out function's responsibility to update the UDP checksum information in the header.
» The following code section is a sample of how to control it:

void myRcvTimestampFxn(UINT8 *plpHdr) {

b
EtherConfig(hEther[i], 1518, 14, 0, 6, 12, 4, myRcvTimestampFxn);

In General
« Do not try to tune the Timer function frequency. Make sure it calls lITimerTick() every 100 ms.

» Watch for out of memory conditions. These can be detected by the return from some functions, but will
also print out warning messages when the messages are enabled. These messages contain the
acronym OOM for out of memory. (Out of memory conditions can be caused by many things, but the
most common cause in the NDK is when TCP sockets are created and closed very quickly without
using the SO_LINGER socket option. This puts many sockets in the TCP timewait state, exhausting
scratchpad memory. The solution is to use the SO_LINGER socket option.)

Controlling Debug Messages

Most of the text messages generated by a network application come from the application. However, it is
possible for the network stack to generate debug messages.

The NDK includes its own debug message system. This system can be ported to behave in any manner
desired, but by default, debug messages are printed to the debugger using an internal printf() function.

Debug messages also include an associated severity level. These levels are DBG_INFO, DBG_WARN,
and DBG_ERROR. The severity level is used for two purposes. First, it determines whether or not the
debug message will be printed, and second, it determines whether or not the debug message will cause
the NDK to shutdown.

By default, all debug messages are printed, and messages with a level of DBG_ERROR causes a stack
shutdown. This behavior can be modified by using XGCONF as described in Section 3.1.5. Or, you can
modify it through the system configuration as described in Section 3.2.4.2 and Section 3.2.4.3. Also see
the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524).

Interpreting Debug Messages

The following is a list of some of the debug messages that may occur during stack operation, along with
the most commonly associated cause.

3.5.3.1 TCP: Retransmit Timeout: Level DBG_INFO

This message is generated by TCP when it has sent a packet of data to a network peer, and the peer has
not replied in the expected amount of time. This can be just about anything; the peer has gone down, the
network is busy, the network packet was dropped or corrupted, and so on.

58

Network Application Development SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Application Debug and Troubleshooting

3.5.3.2 FunctionName: Buffer OOM: Level DBG_WARN
This message is generated by some modules when unexpected out of memory conditions occur. The

stack has an internal resource recovery routine to help deal with these situations; however, a significant
number of these messages may also indicate that there is not enough large block memory available, or

that there is a memory leak. See the notes on the memory manager reports in this section for more
details.

3.5.3.3 mmFree: Double Free: Level DBG_WARN

A double free message occurs when the mmFree() function is called on a block of memory that was not

marked as allocated. This can be caused by physically calling mmFree() twice for the same memory, but

more commonly is caused by memory corruption. See Section 3.5.4 for possible causes.

3.5.3.4 FunctionName: HTYPE nnnn: Level DBG_ERROR

This message is generated only by the strong checking version of the stack. It is caused when a handle is

passed to a function that is not of the proper handle type. Since the object oriented nature of the stack is

hidden from the network applications writer, this error should never occur. If it is not caused by the attempt

to call internal stack functions, then it is most likely the result of memory corruption. See the notes on
memory corruption in this section for possible causes.

3.5.3.5 mmAlloc: PIT ???? Sync: Level DBG_ERROR

This message is generated by the scratch memory allocation system. PIT is an acronym for page
information table. Table synchronization errors can only be caused by memory corruption. See
Section 3.5.4 for possible causes.

3.5.3.6 PBM_enq: Invalid Packet: Level DBG_ERROR

This message is generated by the packet buffer manager (PBM) module driver in the OS adaptation layer.

When the PBM module initially allocates its packet buffer pool, it marks each packet buffer with a magic

number. During normal operation, packets are pushed and popped to and from various queues. On each

push operation, the packet's magic number is checked. When the magic number is invalid, this message

results. It is possible for an invalid packet to be introduced into the system when using the non copy
sockets API extensions, but the vastly more common cause is memory corruption. See the notes on
memory corruption in this section for possible causes.

3.5.4 Memory Corruption
The words memory corruption come up frequently when diagnosing NDK debug messages. This is

because it is easy to corrupt memory on cache devices. Most of the example programs included in the
NDK run using full L2 cache. In this mode, any read or write access to the internal memory range of the
CPU can cause cache corruption and hence cause memory corruption. Since the internal memory range

starts at address 0x00000000, a NULL pointer can cause problems when using full cache.

To check to see if corruption is being caused by a NULL pointer, change the cache mode to use less

cache. When there is some internal memory available, reads or writes to address 0x0 do not cause cache

corruption (the application still may not work, but the error messages should stop).

Another way to track down any kind of cache corruption is to break on CPU reads or writes to the entire

cache range. Code Composer Studio has the ability to trap reads or writes to a range of memory, but both

cannot be checked simultaneously. Therefore, a couple of trials may be necessary.

Of course, it is possible that the memory corruption has nothing to do with the stack. It could be a wild

pointer. However, since corrupting the cache can corrupt memory throughout the system, the cache is the

first place to start.

SPRU523I-May 2001—Revised July 2014 Network Application Development

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

59

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
Application Debug and Troubleshooting www.ti.com
3.5.5 Program Lockups
Most lockup conditions are caused by insufficient Task stack sizes. For example, when writing an HTTP
CGl function, the CGlI function Task thread has only about 5000 bytes of total Task stack. Therefore, using
large amounts of stack is not recommended. In general, do not use the following code:
myTask()
{
char TempBuffer[2000];
myFun(TempBuffer);
3
but instead, use the following:
myTask()
{
char *pTempBuf;
pTempBuf = Memory_alloc(NULL, 2000, O, &eb)
ifT (pTempBuf I= NULL)
{
myFun(pTempBuf);
Memory free(NULL, pTempBuf, 2000);
3
}
If calling a memory allocation function is too much of a speed overhead, consider using an external buffer.
This is just an example, with a little forethought you can eliminate all possible stack overflow conditions,
and eliminate the possibility of program lockups from this condition.
3.5.6 Memory Management Reports
The memory manager that manages scratch memory in the NDK has a built in reporting system. It tracks
the use of scratch memory closely (calls to mmAlloc() and mmFree()), and also tracks calls to the large
block memory allocated (calls to mmBulkAlloc() and mmBulkFree()). Note that the bulk allocation functions
simply call malloc() and free(). This behavior can be altered by adjusting the memory manager.
The memory report is shown below. It lists the max number of blocks allocated per size bucket, the
number of calls to malloc and free, and a list of allocated memory. An example report is shown below:
48:48 (75%) 18:96 (56%) 8:128 (33%) 28:256 (77%)
1:512 (16%) 0:1536 0:3072
(21504746080 mmAlloc: 61347036/0/61346947, mmBulk: 25/0/17)
1 blocks alloced in 512 byte page
38 blocks alloced in 48 byte page
18 blocks alloced in 96 byte page
8 blocks alloced in 128 byte page
12 blocks alloced in 256 byte page
12 blocks alloced in 256 byte page
Here, the entry 18:96 (56%) means that at most, 18 blocks were allocated in the 96 byte bucket. The page
size on the memory manager is 3072, so 56% of a page was used. The entry 21504/46080 means that at
most 21,504 bytes were allocated, with a total of 46,080 bytes available.
The entry mmAlloc: 61347036/0/61346947 means that 61,347,036 calls were made to mmAlloc(), of which
0 failed, and 61,346,947 calls were made to mmFree(). Note that at any time, the call to mmAlloc plus the
failures must equal the calls to mmFree plus any outstanding allocations. Therefore, on a final report
where the report is mmAlloc: n1/n2/n3, n1+n2 should equal n3. If not, there is a memory leak.
60 Network Application Development SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com mmCheck — Generate Memory Manager Report

There are several methods to obtain a memory report when using the telnet console program included
with most of the example applications. The console ‘'mem' command prints out a current report, but more
importantly, the console 'shutdown' command shuts down the stack and prints out a final report. If all
network applications are created and destroyed according to the specifications in this document, there
should be no memory leaks detected in the final report. The function called to obtain a memory report is
defined below.

3.5.6.1 mmCheck — Generate Memory Manager Report

mmCheck Generate Memory Manager Report
Syntax void _mmCheck(uint CallMode, int (*pPrn)(const char *,...));
Parameters
CallMode Specifies the type of report to generate
pPrn Pointer to printf() compatible function
Description Prints out a memory report to the printf() compatible function pointed to by pPrn. The
type of report printed is determined by the value of CallMode. The reporting function has
the option of printing out memory block IDs. This means that the first uint sized field in
the memory block of each allocated block is printed in the report. This is a useful option
when the first field of allocated memory stores an object handle type, or some other
unique identifier.
Call Mode

Can be set to one of the following:

MMCHECK_MAP Map out allocated memory, but do not dump ID's
MMCHECK_DUMP Dump allocated block IDs
MMCHECK_SHUTDOWN Dump allocated block IDs & free scratchpad memory

Note: Do not attempt to use any mmAlloc() functions after requesting a MMCHECK_SHUTDOWN report!

Returns None

SPRU523I-May 2001—Revised July 2014 Network Application Development 61
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

. Chapter 4
I -{IE)S(’?I?UMENTS SPRU5231-May 2001—-Revised July 2014

Network Control Functions

This chapter describes the network control functions.

Topic Page
4.1 Introduction tO0 NETCTRL SOUICE .ttt ieiaeaeaaeaeaa et e eaasaeaa st aaeanraeanaaens 63
A V| = O I Yo o 1= To LU= P 65
4.3 Disabling ON-Demand SEIVIiCES ...uuuiuiitititiitatatititetieea ettt aaaaeneaeaeanananens 69
62 Network Control Functions SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS
www.ti.com Introduction to NETCTRL Source
4.1 Introduction to NETCTRL Source
4.1.1 History
The NETCTRL module was originally a recommended initialization and scheduling method to execute the
NDK. Although mostly simple, this code became standard. Eventually, it was separated out into the
NETCTRL library.
The NETCTRL module is the center of the NDK because it connects the HAL and the OS adaptation layer
to the NDK. It controls both initialization and how events are scheduled for execution within the stack.
Understanding how the NETCTRL module works helps you tune your DSP or ARM networking application
for ideal performance.
4.1.2 NETCTRL Source Files
Source code to the NETCTRL library consists of two C files located in the
<NDK_INSTALL_DIR>\packages\tiindk\netctrl directory:
NETCTRL.C Network Control (Initialization and Scheduling) Module
NETSRV.C Configuration service module (system configuration service provider)
There are two include files associated with NETCTRL in the \INC\NETCTRL directory:
NETCTRL.H Interface specification to NETCTRL
NETSRV.H Interface specification to NETSRV
4.1.3 Main Functions
The NETCTRL.C source module contains source code for all the functions with the NC__ prefix. The
function of the NETCTRL module has three basic parts.
The first function of NETCTRL.C is to perform the system initialization and shutdown that is necessary
before calling any other stack functions. These functions are declared as NC_SystemOpen() and
NC_SystemClose().
The second function of NETCTRL.C is to perform the driver environment initialization and configuration
bootstrap necessary to start the stack functionality. This startup function and its shutdown counterpart are
declared as NC_NetStart() and NC_NetStop().
The final function of NETCTRL.C that is hidden from the caller, is implementing the stack's event
scheduling, which is the center of the stack's operation.
The NETSRV.C module contains the code that boots all the services on the stack. This code takes what is
stored in the stack’s configuration and implements the necessary stack functions to keep the configuration
current. When an active item in the configuration is changed, there is code in the NETSRV module to
execute that change in the NDK.
SPRU523I-May 2001 —-Revised July 2014 Network Control Functions 63

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Introduction to NETCTRL Source www.ti.com

4.1.4 Additional Functions

There are some additional NETCTRL functions that are not documented in the Tl Network Developer's Kit
(NDK) API Reference Guide (SPRU524). These functions are NC_BootComplete() and NC_IPUpdate().
They are both called from the NETSRV module.

The NC_NetStart() function initiates the configuration boot process by creating a boot thread with an entry
point of NS_BootTask() (from NETSRV.C). The NC_BootComplete() function is called by the configuration
boot thread when the configuration boot is complete. It signals to NETCTRL that it can now call the
NetworkStart() application callback that was passed to NC_NetStart() by the application. On return from
NC_BootComplete(), the boot thread is terminated. Therefore, the application programmer may take
control of the NetworkStart() callback thread, although this is not recommended.

The IP address update function is called by NETSRV when an address is added to or removed from the
system. It is this function that then calls the NetworkIPAddr() application callback that was originally
passed to NC_NetStart().

4.1.5 Booting and Scheduling

Section 3.2.5 discussed using the network control (NETCTRL) module. This section examines the internal
source code of the main NETCTRL module and the operation of the event scheduler.

The stack event scheduler is the routine that calls the stack to process packet and timer events. The
scheduler is called from within NC_NetStart() and does not return until the stack is being shut down, which
explains why the NC_NetStart() function does not return to the application until the system is shut down
and the scheduler terminates.

The basic flow of NC_NetStart() is as follows:
NC_NetStart()

{
Initialize_Devices();
CreateConfigurationBootThread() ;
NetScheduler();
CloseConfiguration();
CloseDevices();

3

Out of the functional stages for NC_NetStart() listed above, the two that are of the most concern are the
creation of the boot thread, and the implementation of the network event scheduler.

The boot thread is handled by a second C module in the NETCTRL library named NETSRV.C. This hame
is an abbreviation for Network Service Manager. The NETSRV module hooks into the configuration
system as a configuration service provider. The configuration system module is just an active database. In
contrast, the network service module turns configuration entries into actual NDK objects. The service
module can be altered to fit a particular need. This likely involves the creation of custom configuration tags
for the configuration system. However, a full understanding of the code in NETSRV requires a basic
understanding of nearly all the API functions discussed in the Tl Network Developer's Kit (NDK) API
Reference Guide (SPRU524).

You should be most concerned about the NetScheduler() function because this scheduler runs the NDK. It
looks for events that need to be processed by the NDK, and it performs the work necessary to start
processing.

64 Network Control Functions SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
www.ti.com NETCTRL Scheduler
4.2 NETCTRL Scheduler
4.2.1 Scheduler Overview
The NETCTRL scheduler code is an infinite loop function named NetScheduler() and appears at the end
of the source file NETCTRL.C. It looks for activity events from the low level device drivers, and acts when
events are detected. The loop terminates when a static variable is set through an outside call to
NC_NetStop().
Although the NDK provides a reentrant environment, the core of the stack is not reentrant. Portions of the
code must be protected from access by reentrant calls. Instead of using critical sections that block out all
other Task execution, the software defines an operating mode called kernel mode. Kernel mode is defined
such that only one Task may be in kernel mode at any given time. It does nothing to prevent Tasks from
running that do not use the NDK. This provides protection for the stack, without affecting the execution of
unrelated code. There are two functions defined to enter and exit kernel mode, lIEnter() and IIExit(). They
are part of the OS adaptation layer, and are discussed in more detail in Section 5.2.3. In short, lIEnter()
must be called before calling into the stack, and IIExit() must be called when done calling stack functions.
The basic flow of the scheduler loop can be summarized by this pseudo code:
static void NetScheduler()
{
SetSchedulingPriority();
while(INetHaltFlag)
{
WaitOrPollForEvents();
ServiceDeviceDrivers();
// Process current events in Kernel Mode
iT(StackEvents)
{
// Enter Kernel Mode
11Enter();
ServiceStackEvents();
// Exit Kernel Mode HIExit();
3
3
}
The sections that follow address each of the highlighted functions in turn. Note that the code continues to
run until the NetHaltFlag is set. This flag is set when an application calls the NC_NetStop() function.
4.2.2 Scheduling Options
There are three basic ways to run the scheduler. They can be viewed as three operating modes:
1. Scheduler runs at low priority and only when there are network events to process.
2. Scheduler runs continuously at low priority, polling the device drivers for events.
3. Scheduler runs a high priority, but only when there are network events to process.
The best way to run the scheduler depends on the application and system architecture.
Mode 1 is the most efficient way to run the NDK. Here, the scheduler loop runs at a low priority. This
allows applications that potentially have real-time requirements to have priority over networking where the
real-time restrictions are more relaxed. In addition, the scheduling loop only runs when there is network
related activity; therefore, a standard SYS/BIOS idle loop can also be used.
Mode 2 is used when the device drivers are prevented from using interrupts. This is best for real-time
Tasks, but worst for network performance. Since the scheduler thread runs continuously, it also prevents
the use of a SYS/BIOS idle loop. This is the mode that NETCTRL must use when using a device driver
that requires polling.
SPRU523I-May 2001 —-Revised July 2014 Network Control Functions 65

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

NETCTRL Scheduler www.ti.com

Mode 3 is the most Unix-like environment. Here, the network scheduler Task runs at a higher priority than
any other networking Task in the system. The stack runs whenever new network related events are
detected, pre-empting other Tasks from potentially using the stack. This is the best method for keeping the
networking environment up to date without placing restrictions on how network applications are written.

Setting priority and polling or interrupt driven scheduling is done when the application first calls
NC_SystemOpen(). This is discussed further in Section 3.2.5.2 and in the NDK Programmer’s Reference
Guide.

4.2.3 Scheduler Thread Priority
The first lines of the actual implementation of NetScheduler() include the following code:
// Set the scheduler priority
TaskSetPri(TaskSelf(), SchedulerPriority);
This code changes the priority of the Task thread that calls into NC_NetStart(), so that there is a single
control point to set the scheduler priority. The priority used is that which was passed to the
NC_SystemOpen() function. This is discussed further in Section 3.2.5.2 and in the NDK Programmer’s
Reference Guide.
The scheduler priority (relative to network application thread priority) affects how network applications can
be programmed. For example, when running the scheduler in low priority, a network application cannot
poll for data by continuously calling recv() in a non-blocking fashion. This is because if the application
thread never blocks, the network scheduler thread never runs, and incoming packets are never processed
by the NDK.

4.2.4 Tracking Events with STKEVENT
As previously mentioned, the NETCTRL module is the interface between the stack and the device drivers
in the HAL layer. In older versions of the NDK, device drivers signaled the NETCTRL module through a
global Semaphore. In order to improve this process slightly, the simple Semaphore has been
encapsulated into an object called a STKEVENT.
From the device driver’'s point of view, this event object is a handle that is passed to a function called
STKEVENT_signal(). In reality, this function is only a MACRO that operates on a structure of type
STKEVENT. The NETCTRL module operates directly on this structure. The STKEVENT structure is
defined as follows:
// Stack Event Object
typedef struct _stkevent {

HANDLE hSemEvent;
uint EventCodes[STKEVENT_NUMEVENTS];

} STKEVENT;
#define STKEVENT_NUMEVENTS 5
#define STKEVENT_TIMER 0
#define STKEVENT_ETHERNET 1
#define STKEVENT_SERIAL 2
#define STKEVENT_LINKUP 3
#define STKEVENT_LINKDOWN 4
There are two parts to the structure, a Semaphore handle and an array of events. Each driver signals an
event by setting a flag in the EventCode[] array for its event type, and then optionally signaling the event
semaphore. The semaphore is only signaled when the driver detects an interrupt condition. If the event is
detected during driver polling (either periodic polling or constant in the case of a polling only driver), the
event is set, but the semaphore is not signaled.
You can provide a hook function to run when a driver signals a STKEVENT_LINKUP or
STKEVENT_LINKDOWN event, meaning that the link has come up or gone down. The hook function
should accept a single int status parameter. If the function receives 0, the link is now down (for example,
because a cable was disconnected). If the function receives a 1, the link is now up. To register your hook
function, call NC_setLinkHook() as follows:

66 Network Control Functions SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

WWW.1i

TEXAS
INSTRUMENTS

i.com NETCTRL Scheduler

425

NC_setLinkHook(void (*LinkHook)(int));

The NETCTRL module creates a private instance of the STKEVENT structure that it passes to device
drivers as a handle of type STKEVENT_Handle. The private instance that is operated on directly by
NETCTRL is declared as:

// Static Event Object
static STKEVENT stkEvent;

In the full source to NetScheduler() that follows, the STKEVENT structure is referred to by its instance
stkEvent.

Scheduler Loop Source Code

The code for the example scheduler implementation included in the NDK is shown below. This
implementation fleshes out the pseudo code shown in Section 4.2.1, using the methods and objects
described in this section. In this code, the number of serial port devices and Ethernet devices is passed in
as calling arguments. This device count is obtained from the device drivers when they are asked to
enumerate their physical devices.

#define FLAG_EVENT_TIMER 1

#define FLAG_EVENT_ETHERNET 2

#define FLAG_EVENT_SERIAL 4

#define FLAG_EVENT_LINKUP 8

#define FLAG_EVENT_LINKDOWN 16

static void NetScheduler(uint const SerialCnt, uint const EtherCnt)

{

register int fEvents;

/* Set the scheduler priority */
TaskSetPri(TaskSelf(), SchedulerPriority);

/* Enter scheduling loop */
while(INetHaltFlag)

{
if(stkEvent_hSemEvent)

{
}

SemPend(stkEvent.hSemEvent, SEM_FOREVER);

/* Clear our event flags */
fEvents = 0;

/* First we do driver polling. This is done from outside */
/* kernel mode since pure "polling" drivers can not spend */
/* 100% of their time in kernel mode. */

/* Check for a timer event and flag it. EventCodes[STKEVENT_TIMER] */
/* is set as a result of HITimerTick() (NDK heartbeat) */
iT(stkEvent._EventCodes[STKEVENT_TIMER])
{
stkEvent._EventCodes[STKEVENT_TIMER] = O;
fEvents |= FLAG_EVENT_TIMER;

}

/* Poll only once every timer event for ISR based drivers, */
/* and continuously for polling drivers. Note that "fEvents" */
/* can only be set to FLAG_EVENT_TIMER at this point. */

if(fEvents || !stkEvent.hSemEvent)

{
NIMUPacketServiceCheck (fEvents);

/* Poll Serial Port Devices */
if(SerialCnt)
_Il1SerialServiceCheck(fEvents);

}

SPRU523I-May 2001—Revised July 2014 Network Control Functions 67

Submit

Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

NETCTRL Scheduler

I

TEXAS
INSTRUMENTS

www.ti.com

/* Note we check for Ethernet and Serial events after */
/* polling since the ServiceCheck() functions may */
/* have passively set them. */

/* Was an Ethernet event signaled? */
if(stkEvent._EventCodes[STKEVENT_ETHERNET])

{
/* We call service check on an event to allow the */
/* driver to do any processing outside of kernel */
/* mode that it requires, but don"t call it if we */
/* already called it due to a timer event or by polling */
ifT (1(fEvents & FLAG_EVENT_TIMER) && stkEvent.hSemEvent)
NIMUPacketServiceCheck (0);
/* Clear the event and record it in our flags */
stkEvent.EventCodes[STKEVENT_ETHERNET] = O;
fEvents |= FLAG_EVENT_ETHERNET;
}

/* Check for a Serial event and flag it */
if(SerialCnt && stkEvent.EventCodes[STKEVENT_SERIAL])
{
/* We call service check on an event to allow the */
/* driver to do any processing outside of kernel */
/* mode that it requires, but don"t call it if we */
/* already called it due to a timer event or by polling */
if('(fEvents & FLAG_EVENT_TIMER) && stkEvent.hSemEvent)
_Il1SerialServiceCheck(0);

/* Clear the event and record it in our flags */
stkEvent.EventCodes[STKEVENT_SERIAL] = O;
fEvents |= FLAG_EVENT_SERIAL;

}

/* Check if link went up */
iT(stkEvent._EventCodes[STKEVENT_LINKUP])

{
/* Clear the event and record it in our flags */
stkEvent.EventCodes[STKEVENT_LINKUP] = O;
fEvents |= FLAG_EVENT_LINKUP;

}

/* Check if link went down */
if(stkEvent_EventCodes[STKEVENT_LINKDOWN])

{
/* Clear the event and record it in our flags */
stkEvent._EventCodes[STKEVENT_LINKDOWN] = O;
fEvents |= FLAG_EVENT_LINKDOWN;

3

/* Process current events in Kernel Mode */
if(fEvents)
{

/* Enter Kernel Mode */

11Enter();

/* Check for timer event. Timer event flag is set as a result of */
/* HTimerTick() (NDK heartbeat) */
if(fEvents & FLAG_EVENT_TIMER)

ExecTimer();

/* Check for packet event */
if(fEvents & FLAG_EVENT_ETHERNET)
NIMUPacketService();

68

Network Control Functions

SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Disabling On-Demand Services

/* Check for serial port event */
if(fEvents & FLAG_EVENT_SERIAL)
11SerialService();

/* Exit Kernel Mode */
HHEXit(;

/* Check for a change in link status. Do this outside of above */
/* 1lEnter/1IExit pair as to avoid illegal reentrant calls to */
/* kernel mode by user®s callback. */

/* Check for link up status */
if(fEvents & FLAG_EVENT_LINKUP)

{
/* Call the link status callback, if user registered one */
it (NetLinkHook) {
/* Pass callback function a link status of "up" */
(*NetLinkHook) (1);
}
3

/* Check for link down status */
if(fEvents & FLAG_EVENT_LINKDOWN)

{
/* Call the link status callback, if user registered one */
if (NetLinkHook) {
/* Pass callback function a link status of "down" */
(*NetLinkHook) (0);
3
3

4.3 Disabling On-Demand Services

The NETCTRL library is designed to support "potential” stack features that the user may desire within an
application (e.g. DHCP server). However, the drawback of this is that the code for such features will be
included in the executable even if the application never uses the features. This results in a larger footprint
than is usually necessary. To minimize this problem, the following different versions of the NETCTRL
library are available:

e netctrl_min. This minimal library enables only the DHCP client. It should be used when a minimal
footprint is desired.

» netctrl. This "standard" version of the NETCTRL library enables the following features and has a
medium footprint:

— Telnet server
— HTTP server
— DHCP client
» netctrl_full. This "full" library enables all supported NETCTRL features, which include:
— Telnet server
— HTTP server
— NAT server
— DHCP client
— DHCP server
— DNS server

Each of these NETCTRL library versions is built for both pure IPv4 as well as IPv6.

If you configure the NDK in CCS with the XGCONF configuration tool, the appropriate NETCTRL library is
automatically selected based on the modules you enable.

SPRU523I-May 2001 —-Revised July 2014 Network Control Functions 69

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Disabling On-Demand Services www.ti.com

If you need even more control over which features are available in the NETCTRL library used by your
application, you can #define the following constants in
<NDK_INSTALL_DIR>\packages\ti\ndk\inc\netctr\netsrv.h, which control the features brought into the
NETCTRL library if *_NDK_EXTERN_CONFIG" is not defined.

#define
#define
#define
#define
#define
#define

NETSRV_ENABLE_TELNET 1
NETSRV_ENABLE_HTTP 1
NETSRV_ENABLE_NAT O
NETSRV_ENABLE_DHCPCLIENT 1
NETSRV_ENABLE_DHCPSERVER 1
NETSRV_ENABLE_DNSSERVER 1

By setting any of the above to 0 and rebuilding the appropriate NETCTRL library, individual services can
be purged from the executable.

70

Network Control Functions SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

1 Chapter 5
I TEXAS SPRU523I-May 2001-Revised July 2014

INSTRUMENTS
OS Adaptation Layer

The OS adaptation layer controls how the NDK uses SYS/BIOS resources. This includes Tasks,
Semaphores, and memory. Anything OS related can be adjusted here. This chapter also includes a
history of the OS adaptation layer source, and describes the files which comprise the source code.

Topic Page

5.1 INtrodUCLION tO OS SOUICE . eueuiuinieititeeeuanie it aeeenenrerereaeenanrerereaeaeenanrnreaeaenenannens 72

5.2 Task Thread AbStraction: TASK.C ..uiuiiiiiiiiiieieee ettt r e e et aeeaeees 72

5.3 Packer Buffer Manager: PBM.C ...ttt e e et en e sn e eenes 74

5.4 Memory Allocation System: MEM.Couiiiiiniiieiiiiiieir et rnea e eneaes 75

5.5 Embedded File System: EFS.C... ...ttt 75

5.6 General OS SUPPOrt: OSSY S.C ittt ettt a e e e eaeaeaaas 76

5.7 Jumbo Packet Buffer Manager (JUMbBbO PBM)....ccciuiuiiiiiiiiiiiiieiceet e ieeenee e aa 76

5.8 INTEITUPT MANAGET ... uuiitieie ettt ettt et e et e et et e s et e e e e ra s a s eneeenes 76
SPRU523I-May 2001—Revised July 2014 OS Adaptation Layer 71

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
Introduction to OS Source www.ti.com
5.1 Introduction to OS Source
5.1.1 History
One reason the NDK contains an OS adaptation layer is so that applications that are coded to the
abstraction can be executed in any environment to which the abstraction is ported. For hardware-centric
applications, cross-platform portability is not usually practical nor required. Embedded programmers often
prefer to use SYS/BIOS and take advantage of the support features provided by Code Composer Studio.
For most of the OS adaptation API, the abstraction functions are converted to direct SYS/BIOS calls
through the use of #define macros. However, there are some additions and refinements made at the OS
layer that tend to vary slightly from one SYS/BIOS based system to the next. For these refinements,
external OS abstraction functions are required. This allows the system programmer to adapt the OS layer
to meet the particular system requirements of their SYS/BIOS based environment.
This section covers the OS functions that may need to be adjusted. The OS source code referenced in
this section is found in the SRC\OS directory.
5.1.2 Source Files
Source code to the OS library consists of several files, located in the
<NDK_INSTALL_DIR>\packages\ti\ndk\os directory:
efs.c Embedded (RAM based) file system
intmgmt.c OS abstraction wrapper for configuring interrupts using underlying OS
mem.c Memory allocation and memory copy functions
mem_data.c Memory allocation definitions and #pragmas
oem.c OEM Cache and System functions
0Ssys.c Additional OS support (debug logging, stricmp() function)
semaphore.c Semaphore abstraction
task.c Task thread abstraction
Two additional include files are located in the <NDK_INSTALL_DIR>\packages\ti\ndk\inc\os directory:
osif.h Interface specifications to the adaptation library
oskern.h Semi-private declarations for use by functions like NETCTRL
5.2 Task Thread Abstraction: TASK.C
The TASK.C module contains a subset of the Task abstraction API documented in the TI Network
Developer's Kit (NDK) API Reference Guide (SPRU524). It also contains the source code to the stack's
exclusion method functions: lIEnter() and lIExit(). The latter are discussed in Section 5.2.3 of this
document.
Most of the Task and Semaphore functions defined in the Tl Network Developer's Kit (NDK) API
Reference Guide (SPRU524) are in actuality macros that call SYS/BIOS. These macros are defined in
INC\OS\OSIF.H. The functions that do not directly map to SYS/BIOS are listed here.
5.2.1 TaskSetEnv() and TaskGetEnv()
The set environment and get environment functions are supplied in task.c so that they can be ported to
the SYS/BIOS based system in such a way that they do not conflict with other system use of the
Task_setEnv() and Task_getEnv() functions.
The ability to associate a data structure with a Task thread is essential for the stack library. The problem
with the implementation in SYS/BIOS is that it only allows a single entity to assign this environment
pointer. The result is that any use of Task_setEnv() or Task_getEnv() by a third party conflicts with the
stack software.
72 OS Adaptation Layer SPRU523I-May 2001—-Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

www.ti.com Task Thread Abstraction: TASK.C

The implementation of the task.c supplied in the NDK gets around this limitation by using the SYS/BIOS
Task object hook functions. Sets of hook functions allow multiple functions to hook into SYS/BIOS Task
creation—including the ability to expand the environment. For more information, see the SYS/BIOS
documentation.

NOTE: In the task.c module provided, the TaskSetEnv() and TaskGetEnv() functions return without
setting or getting an environment variable if the "slot" parameter is non-zero. All internal
stack functions use slot zero. The additional slots were originally indented to be used by
other operating systems. Under SYS/BIOS, applications must use Task_setEnv() and
Task_getEnv() functions. Therefore, the SYS/BIOS based implementation of TaskSetEnv()
and TaskGetEnv() is simplified.

5.2.2 TaskCreate(), TaskExit(), and TaskDestroy()
The create, exit and destroy functions all call their SYS/BIOS equivalents.

For TaskExit() and TaskDestroy() to function as expected, the SYS/BIOS Task.deleteTerminatedTasks
configuration parameter must be set to “true”. This parameter setting instructs the Task module to delete
completed Tasks in the SYS/BIOS Idle task. Part of cleaning up involves freeing Task stack memory.

The NDK configuration sets the Task.deleteTerminatedTasks to “true” automatically. If your application
does not use the NDK Global module in XGCONF for configuration, it must manually set this parameter.
For example:

var Task = xdc.useModule("ti.sysbios.knl._Task");
Task.deleteTerminatedTasks = true;

NOTE: In previous releases, the NDK did not require this configuration setting. If this configuration
setting is not made, Task clean-up will not occur, and out of memory errors may occur
because the task stacks and objects will not be freed when TaskEXxit() and/or TaskDestroy()
is called.

5.2.3 Choosing the lIEnter()/lIExit() Exclusion Method

Although the NDK provides a reentrant environment, the core of the stack is not reentrant. Portions of the
code must be protected from access by reentrant calls. Instead of using critical sections that block out all
other Task execution, the software defines an operating mode called kernel mode. Kernel mode is defined
such that only one Task may be in kernel mode at any given time. It does nothing to prevent Tasks from
running that do not use the NDK. This provides protection for the stack software, without affecting the
execution of unrelated code.

The lIEnter() and lIExit() functions are used throughout the stack code to enter and exit kernel mode, and
provide code exclusion without using critical sectioning. They are equivalent to the splhigh()/splx() Unix
functions and their multiple cousins.

There are two example implementations of the lIEnter() and lIExit() functions included in the NDK. The
example implementations provide exclusion through Task priority or by using Semaphores. Source code
to both implementations is included in the Task abstraction source file: SRC\OS\TASK.C

One method of exclusion is the priority method. Here, the Task that calls lIEnter() is boosted to a priority
level of OS_TASKPRIKERN, which guarantees that it will not be pre-empted since it is impossible for
another Task to be running (all Tasks that can possibly call into the stack have a lower priority level). The
stack is coded so that a Task at the kernel mode priority level will never block. When IIExit() is called, the
Task's original priority is restored. Note that time critical Tasks can be assigned a priority higher than
OS_TASKPRIKERN, but they are not allowed to call into the NDK.

Priority-based exclusion makes it important that your application use only the TaskCreate() APl combined
with one of the NDK defined task priorities. If you call the SYS/BIOS Task_create() API with a priority
greater than NDK's kernel priority level, the priority-based exclusion is likely to break. Setting a thread to a
higher priority than the NDK's high-priority thread level may disrupt the system and cause unpredictable
behavior if the thread calls any stack-related functions.

SPRU523I-May 2001—Revised July 2014 OS Adaptation Layer 73

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

Packer Buffer Manager: PBM.C www.ti.com

5.3

531

5.3.2

An alternate implementation of the enter and exit functions uses a Semaphore with an initial count of 1.
When lIEnter() is called, the Task calls a pend operation on the Semaphore. If some other Task is
currently executing in kernel mode, the new Task will pend until llExit() is called by the original Task. A call
to lIExit() results in a post operation which frees up one Task to enter the stack. This form of the function
pair is safer than the priority method, but may also be slower. In general, Semaphore operations are a
little slower than Task priority changes. However, this method also has its advantages. The main
advantage with the Semaphore method is that Tasks can be assigned priority levels more freely. There is
no need to restrict Task priority or be concerned if a high priority Task is going to call into the NDK.

By altering the #if statements around the two implementations, the system developer can choose to use
either implementation.

Packer Buffer Manager: PBM.C

The Packet Buffer Manager (PBM) is charged with managing all the packet buffers in the system. Packet
buffers are used by the NDK and device drivers to carry networking packet data. The PBM programming
abstraction is discussed in the NDK Programmer’s Reference Guide. This section discusses the
implementation provided in the NDK.

Packet Buffer Pool

The PBM buffers are configured in the Buffers tab of the Global module configuration in XGCONF. You
can set the Number of frames (default = 192), the Frame buffer size (default=1536 bytes), and the
memory section where the buffers are stored.

Note that when the memory is declared, it is placed on a cache aligned boundary. Also, each packet
buffer must be an even number of cache lines in size so that it can be reliably flushed without the risk of
conflicting with other buffers.

If you are not using Macronix (LogiclO) Ethernet, you can set the Frame buffer size to 1536.

If you are using Macronix (LogiclO) Ethernet, a 1664-byte packet buffer is needed. In a very simple
Ethernet system, the max size of the frame buffer would be 1518, but a few things in the NDK
environment change that size. First, all devices use a standard packet header size from the start of the
packet buffer to the IP header. The result is that any packet can be routed to any device without altering
the location of the IP header. The standard size used is 22 bytes, which is the size of a PPPoE header
plus the standard Ethernet header. Next, the Macronix Ethernet MAC transfers data in 16-byte bursts.
However, the first four bytes of the first transfer is 4 bytes of status, leaving only 12 bytes of data. A little
math reveals the Macronix writes 1532 bytes into the packet buffer on a 1518 byte frame. Taking the
standard 1532 bytes required by Macronix, and adding an additional 8 byte pad for the standard header
(22 — standard 14 byte Ethernet) gives 1540 bytes which rounds to 1664 when expanded to fill a full L2
cache line.

Packet Buffer Allocation Method

The basic method of buffer allocation is the buffer pool. Buffers are allocated when the PBM_alloc()
function is called. This function can be called at interrupt time, so you must ensure only non-blocking calls
are made as a result. However, only device drivers can make calls from an ISR and device drivers never
ask for a buffer larger than PKT_SIZE_FRAMEBUF. Therefore, the fallback method for allocating larger
buffers can technically make blocking calls, although the implementation included in the NDK does not
make blocking calls under any circumstance.

The basic method of allocation is to check the size. When the size is less than or equal to
PKT_SIZE_FRAMEBUF, then the packet buffer is obtained off the free queue. If there are no free packet
buffers on the queue, the function returns NULL. Note that the PBM module could be modified to grow the
free pool or use memory allocation as a fallback, but any buffer supplied as a result of a request with the
size less than or equal to PKT_SIZE_FRAMEBUF, must adhere to the cache line restrictions outlined in
the previous section.

For packet buffers larger than PKT_SIZE_FRAMEBUF, standard memory can be used. These allocation
requests are only made for re-assembling large IP packets. The resulting packet cannot be submitted to a
hardware device without being fragmented. Therefore, the packet buffer does not need to be compatible
for hardware transmission.

74

OS Adaptation Layer SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I

TEXAS
INSTRUMENTS

www.ti.com Packer Buffer Manager: PBM.C

5.3.3 Referenced Route Handles

5.4

5.5

One of the fields in the PBM structure is a referenced handle to a route used to route a packet to its final
destination. The PBM module must be aware of this handle when freeing a packet buffer or copying a
packet buffer.

When packet buffer is freed by calling PBM_free(), the PBM module must check for a route handle held by
the packet buffer, and dereference the handle if it exists. For example:

iT(pPkt->hRoute)

{
RtDeRef(pPkt->hRoute);

pPkt->hRoute = 0O;
}

As noted in the source code to PBM.C, the function RtDeRef() can only be called from kernel mode.
However, instead of defining two versions of the PBM_free() function, the PBM module relies on the fact
that device drivers are never given packet buffers containing routes. Therefore, any call to PBM_free()
where the buffer contains a route, must have been called from within kernel mode. It is, therefore, safe to
call RtDeRef().

When a packet buffer is copied with PBM_copy(), all the information about the packet is also copied. This
information may include a referenced route handle. If the handle to a route is copied in the process of
copying the packet buffer, then a reference to that handle must also be added by calling the RtRef()
function. The PBM module does not need to worry about kernel mode for the same reason as it did not
with PBM_free().

Memory Allocation System: MEM.C

The memory allocation system consists of allocation functions for small blocks of memory, large blocks,
and for initializing and copying memory blocks. The API definitions for the files contained in this module is
defined in the Tl Network Developer's Kit (NDK) API Reference Guide (SPRU524). These functions are
used throughout the stack. The source code is provided so the systems programmer can adapt the
memory system to fit a particular need.

The size and placement of this Memory Manager Buffer array can be configured in the Buffers tab of the
Global module configuration in XGCONF. The Page size is depended upon by various stack entities, so
you should be careful when changing it. The Number of pages used can be adjusted up or down to
increase or decrease the scratchpad memory size.

The allocation functions for the small memory blocks (mmAlloc() and mmFree()) should not be altered.
These functions are used by the NDK to allocate and free scratchpad type memory. They can be called at
interrupt time and are not allowed to block. The memory is currently allocated out of a static array.

The memory manipulation functions mmzZerolnit() and mmCopy() are both coded in C. A system
programmer may recode these functions in assembly, or to use an EDMA channel to move memory.

The allocation functions for the large memory blocks (mmBulkAlloc() and mmBulkFree()) are currently
defined to use Memory_alloc() and Memory_free() on the default heap. These functions can be altered to
use any memory allocation system of choice. They are not called at interrupt time and are allowed to
block.

The default Heap is used for allocations. If you want to change the Heap used by mmBulkAlloc(), you
must use SYS/BIOS or XDCtools APIs as appropriate.

Embedded File System: EFS.C

The EFS file system provides RAM based file support for the HTTP server and any CGI functions provided
by the applications programmer. This API is defined in the Tl Network Developer's Kit (NDK) API
Reference Guide (SPRU524). The source code is provided for adapting the functions to support a physical
storage media. This allows the HTTP server to work on the physical device without porting the server.

SPRU523I-May 2001—Revised July 2014 OS Adaptation Layer 75
Submit Documentation Feedback

Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/spru524
http://www.ti.com/lit/pdf/spru524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS
INSTRUMENTS

General OS Support: OSSYS.C www.ti.com

5.6

5.7

5.8

General OS Support: OSSYS.C

The OSSYS file is a generic catch-all for functions that do not have a home elsewhere. Currently, this
module contains DbgPrintf()—a debug logging function and stricmp(), which is not contained in the RTS.

Jumbo Packet Buffer Manager (Jumbo PBM)

The jumbo packet buffer manager is responsible for handling memory allocation and de-allocation for
packet buffers of size greater than MMALLOC_MAXSIZE (3068 bytes). This packet buffer manager is
useful when the application intends on using Jumbo frames, i.e., packets larger than 1500 bytes in size
that cannot be typically allocated using PBM or SYS/BIOS APIs in an interrupt context.

The following are some of the main features of the Jumbo PBM:

» The Jumbo PBM implementation is by large similar to the PBM implementation itself, except for the
block sizes it can handle are larger than the ones in PBM and ranges between 3K and 10K bytes by
default.

» Jumbo PBM does not use any SYS/BIOS APIs or dynamic memory allocation method for it's memory
allocation and thus can be used safely in interrupt context. It uses a static memory allocation method,
i.e. it reserves a chunk of memory in the "far" section of the device memory and it further uses it to
allocate for the packet buffers required.

» The Jumbo PBM allocates memory off a separate section in the memory than the PBM itself. PBM
uses the memory sections "NDK_PACKETMEM", "NDK_MMBUFFER" for its memory allocation. On
the other hand, Jumbo PBM defines and uses a section called "NDK_JMMBUFFER" for its memory
allocation. The size of this section and its placement are all customizable.

e A sample implementation of the Jumbo PBM is provided in the NDK OS AL. The customer is expected
to customize this implementation according to their application needs and system's memory
constraints. The memory section sizes, block sizes and the allocation method itself is all up for
customization.

» Jumbo PBM APIs are not expected to be invoked directly. The application and driver must call the
PBM_alloc() / PBM_free() APIs only. These APIs in turn invoke the Jumbo PBM APIs to allocate/clean-
up memory if the memory requested is larger than what PBM itself can handle, i.e., 3K bytes.

For a sample implementation of the Jumbo PBM please refer to the source file JUMBO_PBM.C in the
<NDK_INSTALL_DIR>\packages\ti\ndk\stack\pbm directory.

Interrupt Manager

The Interrupt Manager defines the APIs and data structures required to configure and manage interrupts
in a generic way. This wrapper hides the OS specific implementation details of interrupt management by
providing a unified API to do the same.

The NDK interrupt manager implementation provided in this package uses SYS/BIOS as its underlying
OS. It uses the SYS/BIOS Hwi module (and the EventCombiner module for C6000 targets) to configure
the interrupts.

The APIs and data structures exported by this module are documented in the Tl Network Developer's Kit
(NDK) API Reference Guide (SPRU524). Sample implementations using these APIs can be found in any
of the Ethernet driver's code of the supported platform's NDK Support Packages.

76

OS Adaptation Layer SPRU523I-May 2001—Revised July 2014

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.ti.com
http://www.ti.com/lit/pdf/SPRU524
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

I3 TEXAS
INSTRUMENTS

Appendix A

SPRU523I-May 2001-Revised July 2014

Revision History

Table A-1 lists the changes made since the previous version of this document.

Table A-1. Document Revision History

Reference Additions/Modifications/Deletions
Change Summary for NDK 2.24 (SPRU523I)
Section 1.2 The installation process for the NDK and NSP has been modified due to changes in TI-RTOS,
which includes the NDK and NSP for some targets.
Section 1.2.3 A list of macros that can be defined when rebuilding the NDK libraries is provided.
Section 1.3.3 Additional target builds are provided. The file extensions for these builds are listed.

Section 1.3.6 and Chapter 5 The miniPrintf library has been removed from the product.

Section 1.5.1 A reports directory has been added. It contains MISRA and Coverity analysis reports.
Section 1.5.3 The binsrc tool is listed.
Section 1.5.5 Information about example programs has been modified due to changes in TI-RTOS, which
includes the NDK and NSP for some targets.
Section 1.6 The TI Resource Explorer is now the recommended way to import examples into CCS.
Section 4.2.4 Link up and Link down events have been added. You can specify a hook function to run these

events occur.
Section 4.2.5 The scheduler loop source code has been modified. Changes include the addition of checking
for changes in the link status and the removal of code executed if NIMU support is disabled.
Change Summary for NDK 2.21 (SPRU523H)

Section 1.7 and Section 3.1 New graphical configuration support for NDK modules has been added within the XGCONF
configuration tool in CCS. Many settings that had to be made in C code can now be made in the

configuration.
Section 1.1 In addition to C6000 support, the NDK now supports the Cortex-A8 and ARM9 in ELF format.
Section 1.6 The NDK is still compatible with Code Composer Studio (CCS) 4.2, but it is suggested that you

use it with CCS 5.1+.

Section 1.3.3 and Section 1.5.1 The directory structure for the NDK has changed. Libraries and source files are stored together
in a separate directory named for each library, rather than in a \lib and \src directory.

Section 1.3.8 There are three choices for the network control library; this allows you to eliminate unused stack
features from the build.

Section 1.2 and Section 1.5.5 Examples are no longer shipped with the NDK core software product. Instead, they are provided
in separate NDK Support Package (NSP) products or as part of the SDK for that device family.

Section 1.5.4 Test applications are now provided for Linux (in addition to Windows).

DSP/BIOS 5.x is no longer supported; use the NDK with SYS/BIOS 6.30+. Changes to example
code have been made throughout this document to use SYS/BIOS modules in place of
DSP/BIOS modules.

Changes in Earlier Versions

Related Documentation From Added new document reference
Texas Instruments

Section 1.3.1 Added/replaced text
Section 1.3.2 Added text
Section 1.3.4 Added/replaced text
Section 1.3.5 Added text
Section 1.3.8 Added/replaced text
Section 1.6.3 New section/replaced text
SPRU523I-May 2001—Revised July 2014 Revision History 77

Submit Documentation Feedback
Copyright © 2001-2014, Texas Instruments Incorporated

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

13 TEXAS

INSTRUMENTS
Appendix A www.ti.com
Table A-1. Document Revision History (continued)
Reference Additions/Modifications/Deletions
Deleted CCStudio Project Link Order section.
Section 3.5.1 Changed "MMALLOC_SIZE" to MMALLOC_MAXSIZE"
Changed CFGITEMP_IP_IPREASMMAXSIZE to CFGITEM_IP_IPREASMMAXSIZE
Changed CFGITEM_IP_IPSOCKUDPRXLIMIT to CFGITEM_IP_SOCKUDPRXLIMIT
Section 4.2.5 Replaced code
Section 1.2.3 Replaced text
Section 1.3.6 Replaced text
Section 1.4.5 Replaced text
Section 1.5 Replaced/added text
Section 1.5.3 Replaced text
Deleted previous Building in NIMU section.
Section 2.2.3.4 Added new section
Section 3.4 Added note
Section 5.1.2 Added text
Section 5.7 Added new section
Section 5.8 Added new section
78 Revision History SPRU523I-May 2001—-Revised July 2014

Copyright © 2001-2014, Texas Instruments Incorporated

Submit Documentation Feedback

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRU523I

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated

http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	Preface
	1 Overview
	1.1 Introduction
	1.2 Installing and Setting Up the NDK and NSP
	1.2.1 Installing the NDK
	1.2.2 Installing the NDK Support Package (NSP)
	1.2.3 Rebuilding NDK Libraries

	1.3 NDK Stack Library Design
	1.3.1 Design Philosophy
	1.3.2 Control Flow
	1.3.3 Library Directory Structure
	1.3.4 The STACK Library
	1.3.5 NETTOOL Libraries
	1.3.6 OS Library
	1.3.7 HAL Libraries
	1.3.8 NETCTRL Libraries

	1.4 NDK Programming APIs
	1.4.1 Operating System Abstraction
	1.4.2 Sockets and Stream IO API
	1.4.3 NETTOOL Services and Support Functions
	1.4.4 Internal Stack API
	1.4.5 Hardware Adaptation Layer API

	1.5 NDK Software Directory Structure
	1.5.1 Directories in packages\ti\ndk
	1.5.2 NDK Include File Directory
	1.5.3 Tool Programs
	1.5.4 Windows and Linux Test Utilities
	1.5.5 Example Programs

	1.6 Creating CCS Projects that Use the NDK
	1.6.1 Adding NDK Support to an Existing Application
	1.6.2 Troubleshooting NDK Application Builds
	1.6.3 Creating CCS Projects for Big-Endian Applications

	1.7 Configuring NDK Modules
	1.7.1 Adding a Module to Your Configuration
	1.7.2 Setting Properties for a Module
	1.7.3 Adding an Instance for a Module
	1.7.4 Saving Changes to the Configuration

	2 Example Applications
	2.1 Troubleshooting
	2.2 The Network Client Example Application
	2.2.1 Building the Application
	2.2.2 Loading the Application
	2.2.3 Testing the Application
	2.2.3.1 HTTP Server
	2.2.3.2 Telnet Server
	2.2.3.3 Data Servers
	2.2.3.4 IPv6 Stack Testing

	2.3 The Network Configuration Example Application
	2.3.1 Building the Application
	2.3.2 Loading the Application
	2.3.3 Configuring the Application
	2.3.3.1 Setting the Initial IP Address
	2.3.3.2 Full System Configuration

	2.3.4 Testing the Application
	2.3.4.1 Telnet Server
	2.3.4.2 Data Servers

	2.4 The Network HelloWorld Example Application
	2.4.1 Building the Application
	2.4.2 Loading the Application
	2.4.3 Testing the Application
	2.4.3.1 HelloWorld

	2.5 The Serial Client Examples

	3 Network Application Development
	3.1 Configuring the NDK with XGCONF
	3.1.1 Linked Libraries Configuration
	3.1.2 Global Scheduling Configuration
	3.1.2.1 Network Scheduler Task Options
	3.1.2.2 Priority Levels for Network Tasks
	3.1.2.2.1 Stack Sizes for Network Tasks

	3.1.2.3 Priorities for Tasks that Use NDK Functions

	3.1.3 Global Buffer Configuration
	3.1.4 Global Hook Configuration
	3.1.5 Global Debug Configuration
	3.1.6 Advanced Global Configuration
	3.1.7 Adding Clients and Servers

	3.2 Configuring the NDK with C Code (without XGCONF)
	3.2.1 Required SYS/BIOS Objects
	3.2.2 Include Files
	3.2.3 Library Files
	3.2.4 System Configuration
	3.2.4.1 Configuration Examples
	3.2.4.1.1 Constructing a Configuration for a Static IP and Gateway
	3.2.4.1.2 Constructing a Configuration using the DHCP Client Service
	3.2.4.1.3 Using a Statically Defined DNS Server

	3.2.4.2 Controlling NDK and OS Options via the Configuration
	3.2.4.3 Shutdown
	3.2.4.4 Saving and Loading a Configuration
	3.2.4.4.1 Saving the Configuration
	3.2.4.4.2 Loading the Configuration

	3.2.5 NDK Initialization
	3.2.5.1 The NETCTRL Task Thread
	3.2.5.2 Pre-Initialization
	3.2.5.3 Invoking New Network Tasks and Services
	3.2.5.4 Network Startup
	3.2.5.5 Adding Status Report Services

	3.3 Creating a Task
	3.3.1 Initializing the File Descriptor Table

	3.4 Example Code
	3.5 Application Debug and Troubleshooting
	3.5.1 Troubleshooting Common Problems
	3.5.2 Controlling Debug Messages
	3.5.3 Interpreting Debug Messages
	3.5.3.1 TCP: Retransmit Timeout: Level DBG_INFO
	3.5.3.2 FunctionName: Buffer OOM: Level DBG_WARN
	3.5.3.3 mmFree: Double Free: Level DBG_WARN
	3.5.3.4 FunctionName: HTYPE nnnn: Level DBG_ERROR
	3.5.3.5 mmAlloc: PIT ???? Sync: Level DBG_ERROR
	3.5.3.6 PBM_enq: Invalid Packet: Level DBG_ERROR

	3.5.4 Memory Corruption
	3.5.5 Program Lockups
	3.5.6 Memory Management Reports
	3.5.6.1 mmCheck – Generate Memory Manager Report

	4 Network Control Functions
	4.1 Introduction to NETCTRL Source
	4.1.1 History
	4.1.2 NETCTRL Source Files
	4.1.3 Main Functions
	4.1.4 Additional Functions
	4.1.5 Booting and Scheduling

	4.2 NETCTRL Scheduler
	4.2.1 Scheduler Overview
	4.2.2 Scheduling Options
	4.2.3 Scheduler Thread Priority
	4.2.4 Tracking Events with STKEVENT
	4.2.5 Scheduler Loop Source Code

	4.3 Disabling On-Demand Services

	5 OS Adaptation Layer
	5.1 Introduction to OS Source
	5.1.1 History
	5.1.2 Source Files

	5.2 Task Thread Abstraction: TASK.C
	5.2.1 TaskSetEnv() and TaskGetEnv()
	5.2.2 TaskCreate(), TaskExit(), and TaskDestroy()
	5.2.3 Choosing the llEnter()/llExit() Exclusion Method

	5.3 Packer Buffer Manager: PBM.C
	5.3.1 Packet Buffer Pool
	5.3.2 Packet Buffer Allocation Method
	5.3.3 Referenced Route Handles

	5.4 Memory Allocation System: MEM.C
	5.5 Embedded File System: EFS.C
	5.6 General OS Support: OSSYS.C
	5.7 Jumbo Packet Buffer Manager (Jumbo PBM)
	5.8 Interrupt Manager

	A Revision History
	Important Notice

