IPC Install Guide Linux

IPC Install Guide Linux

Introduction

Inter/Intra Processor Communication (IPC) is a product designed to enable communication between processors in a
multi-processor environment. Features of IPC include message passing, multi-processor gates, shared memory

primitives, and more.

IPC is designed for use with processors running SYS/BIOS applications. This is typically an ARM or DSP. IPC
includes support for High Level Operating Systems (HLOS) like Linux, as well as the SYS/BIOS RTOS. The

breadth of IPC features supported in an HLOS environment is reduced in an effort to simplify the product.

Install

IPC is released as a zip file. To install, simply extract the file.

buildhost$ unzip ipc_<version>.zip

This will extract the IPC product in a directory with its product name and version information (e.g.

c:\ipc_3_xx_xx_xx or /home/<user>/ipc_3_xx_XX_XX)

NOTE

* This document assumes the IPC install path to be the user's home directory on a Linux host machine
(/home/<user>) or the user's main drive on a Windows host machine (C:\). The variable IPC_INSTALL_DIR
will be used throughout the document. If IPC was installed at a different location, make appropriate changes to
commands.

* Some customers find value in archiving the released sources in a configuration management system. This can

help in identifying any changes made to the original sources - often useful when updating to newer releases.

Build

The IPC product often comes with prebuilt SYS/BIOS-side libraries, so rebuilding them isn't necessary. The
Linux-side user libraries may also be provided prebuilt, but customers often want to change the configuration (e.g.

static, dynamic).
IPC provides GNU makefile(s) to rebuild all its libraries at the base of the product, details are below.
NOTE

GNU make version 3.81 or greater is required. The XDC tools (provided with most SDKs and CCS distributions)
includes a pre-compiled version of GNU make 3.81 in $(XDC_INSTALL_DIR)/gmake.

products.mak

IPC contains a products.mak file at the root of the product that specifies the necessary paths and options to build

IPC for the various OS support.
Edit products.mak and set the following variables:
e Linux

* TOOLCHAIN_INSTALL_DIR - Path to the devices ARM Linux cross-compiler toolchain
* TOOLCHAIN_LONGNAME - Long name of the devices toolchain (e.g. arm-none-linux-gnueabi)
* PLATFORM - (Optional) Device to configure for Linux-side builds.

* To find the supported platform list run: ./configure --help




IPC Install Guide Linux

* If not set, all supported platforms will be built.
« CMEM_INSTALL_DIR - (Optional) Path to TI Linux Utils package to locate the pre-built CMEM [}

libraries used by some tests.

» This option will build additional test applications for select platforms.
* SYS/BIOS

e XDC_INSTALL_DIR - Path to TI's XDCTools installation
* BIOS_INSTALL_DIR - Path to TI's SYS/BIOS installation
¢ ti.targets.<device target and file format> - Path to TI toolchain for the device.
¢ gnu.targets.arm.<device target and file format> - Path to GNU toolchain for the device.
* Set only the variables to the targets your device supports to minimize build time.
NOTE
The dependencies applicable for each supported device can be found in the IPC Release Notes provided in the

product.

ipc-linux.mak

The Linux-side build is provided as a GNU Autotools (Autoconf, Automake, Libtool) project. If you are familiar
with Autoconf GNU projects, you can proceed with using the ./configure script directly to cross-compile the Linux
user libraries and tests.

For those that require some assistance, the IPC package provides a GNU makefile (ipc-linux.mak) to configure the
Linux-side build, using the options and component paths set in the products.mak file. To configure the build using

these files, issue the following command:

<buildhost> make -f ipc-linux.mak config

There are few additional target goals provided in the ipc-linux.mak file for commonly used configurations. These

goals include:

* config - (Default) Configure both static and shared (dynamic) Linux IPC user libraries. Test applications link
against the shared libraries.
» config-static - Configure static only libraries and tests.

* config-shared - Configure shared (dynamic) only libraries and tests.

Then build the Linux side of IPC by issuing the following:

<buildhost> make

You can also specify a PLATFORM to (re)configure for on the command line which overrides any options set in the

products.mak file as follows:

<buildhost> make -f ipc-linux.mak config PLATFORM=omapl38

<buildhost> make

When reconfiguring for a new Linux toolchain or platform, the Linux build should be clean(ed) before

reconfiguring:

<buildhost> make clean



http://processors.wiki.ti.com/index.php/Linux_Utils_Overview

IPC Install Guide Linux

ipc-bios.mak
The SYS/BIOS-side IPC is built with a GNU makefile. After editing products.mak, issue the following command:

<buildhost> make -f ipc-bios.mak all

Based on the number of targets you're building for, this may take some time.

Run

The IPC product provides a way to install (copy) the necessary IPC executables and libraries onto the device's target

file-system to simplify the execution of the applications.

Configuring Kernel

The IPC product provides a set of Linux kernel patches that need to be applied to the different device supported
kernels to add necessary kernel support. The patches are located in the linux/patches directory of the IPC installation.

OMAP-L138

The kernel for the OMAP-L138, can be obtained from Gitorious linux-davinci project 21

The patches apply to the following commit id: 595ab716fc6e648b7dc79a58a01917ebb67b9508

The specific patches needed for this kernel can be found in the linux/patches/3.8.0 of your IPC installation.

Once the patches are applied, there are a few key config parameters needed for rpmsg and socket driver to
build/work.

CONFIG_REMOTEPROC=m
CONFIG_DASXX_REMOTEPROC=m
CONFIG_RPMSG=m
CONFIG_VIRTIO=m

It is also recommended to compile a Linux kernel with the debugfs facility
CONFIG_DEBUG_FS=y

Re-build the kernel. For example:

buildhost$ make ARCH=arm CROSS_COMPILE=arm-none-linux—-gnueabi- ulmage

You will also need to re-build the kernel modules and install them on your target's file system. For example:

buildhost$ make ARCH=arm CROSS_COMPILE=arm-none-linux—gnueabi- modules
buildhost$ make ARCH=arm CROSS_COMPILE=arm-none-linux—gnueabi-
INSTALL_MOD_PATH=<target filesystem> modules_install

Kernel Boot-up Parameters

IPC requires an argument to be passed to the Linux kernel during boot up to properly run the tests. The remote

processor(s) (rproc) memory location needs to be set.

» For example,

bootargs console=ttyS2,115200n8 root=/dev/nfs
nfsroot=HOST:nfs_root,nolock rw ip=dhcp rproc_mem=16MQ@0OxC3000000

This is just an example, bootargs may vary depending on available setup

Depending on the memory map used in the final system configuration, the memory to be reserved for rproc usage



http://gitorious.org/linux-davinci

IPC Install Guide Linux

may differ.

Installing Tests
To assemble the IPC test executables and libraries into a directory structure suitable for running on the target's

file-system, issue the following command in the IPC install directory:

buildhost$ make install prefix=<target filesystem>/usr

Depending on you target's filesystem directory privileges, you may be required to run sudo make install to properly
install the files

NOTE

The test executables and libraries will be installed in the location path set by the prefix variable. If you are installing
directly on a host mounted Network Filesystem(NFS), make sure to specify usr at the end of the prefix variable
path. As with other variables, you can override this on the command line:

buildhost$ sudo make install prefix=<target filesystem>/usr

The remote processor's applications will be loaded via the remote_proc kernel module but they need to reside on the
devices target filesystem in /lib/firmware directory. The location of the remote core application within the IPC

product various based on device.

OMAP-L138

The OMAP-L138 remote core applications can be found in
IPC_INSTALL_DIR/packages/ti/ipc/test/ti_platforms_evmOMAPL138_DSP directory.

Copy the messageq_single.xe674 onto the devices target filesystem into the /lib/firmware directory.
buildhost$ cp

ti/ipc/test/ti_platforms_evmOMAPL138_DSP/ti/ipc/test/ti_platforms_evmOMAPL138_DSP

<target filesystem>/lib/firmware/.

IPC Daemons and Drivers

IPC provides system-wide services across multiple applications, and utilizes low-level system hardware (e.g.
interrupts and shared memory). To facilitate these services, IPC uses a user-space daemon (LAD) and several kernel

device drivers.

LAD

System-wide IPC state is managed by a user-space daemon (LAD). This daemon is specific to a given device, and is
named lad_<device>. It will reside on the target's filesystem (typically in /usr/bin/) after following the #Installing
Tests section. To run LAD, execute:

target# /usr/bin/lad_<device>

LAD takes an optional argument which is a filename where log statements will be emitted. This file will be created
in the /tmp/LAD/ directory. For example, to instruct LAD to emit log statements into a 'lad.txt’ file, start LAD like
this:

target# /usr/bin/lad_<device> lad.txt




IPC Install Guide Linux

Drivers

The kernel drivers/modules added by the Linux patches must be inserted into the kernel for IPC applications to run
correctly. Refer to the #Configuring Kernel section. The required modules must be configured, built and loaded onto

the target's filesystem.

Prior to loading the modules, a directory (/debug) must be created at the root of your devices filesystem. This
directory will be mounted as a debugfs (debug filesystem) which the kernel modules will use to provide details about

the slaves (e.g. running state, trace output, etc). If the /debug directory doesn't exist, simply create it as follows:

target# mkdir /debug

OMAP-L138

The kernel modules can be loaded by issuing the following command on the target's file-system:

target# depmod -a

target# mount -t debugfs none /debug

target# modprobe remoteproc

target# modprobe da8xx_remoteproc fw_name=messagedq_single.xe674
target# modprobe virtio_rpmsg_bus

target# modprobe rpmsg_proto

The kernel modules can be unloaded by issuing the following command on the target's file-system:

target# umount /debug

target# rmmod rpmsg_proto
target# rmmod virtio_rpmsg_bus
target# rmmod da8xx_remoteproc

target# rmmod remoteproc

Running Test Applications

The test applications are already on the target's filesystem in /usr/bin assuming the #Installing Tests section has been

followed.

To run the test application's, execute the following on the target's filesystem:

target# /usr/bin/MessageQApp_<device>

OMAP-L138

The expected output on the Linux-side should be:

Using numLoops: 100; procId : 1

Entered MessageQApp_execute

Local MessageQId: 0x1

Remote queueId [0x10000]

Exchanging 100 messages with remote processor DSP...
MessageQ_get #0 Msg = 0x15328

Exchanged 1 messages with remote processor DSP

MessageQ_get #1 Msg = 0x15328

Exchanged 99 messages with remote processor DSP

MessageQ_get #99 Msg = 0x15328




IPC Install Guide Linux

Exchanged 100 messages with remote processor DSP
Sample application successfully completed!

Leaving MessageQApp_execute

The output on the remote processor, can be obtained by running the following on the target filesystem:

target# cat /debug/remoteproc/remoteprocO/tracel

The expected output on the remote processor should be:

3 Resource entries at 0xc3100000
messageq_single.c:main: MultiProc id = 1
registering rpmsg-proto service on 61 with HOST
tsklFxn: created MessageQ: SLAVE_DSP; QueuelID: 0x10000
Awaiting sync message from host...
[t=0x00000001:67984156] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send:
no object for endpoint: 53
[t=0x00000001:67f626ed] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send:
no object for endpoint: 53
Received msg from (procId:remoteQueueId): 0x0:0x1
payload: 8 bytes; loops: 100 with printing.
Got msg #0 (40 bytes) from procId 0
Sending msg Id #0 to procId O
Got msg #1 (40 bytes) from procId 0
Sending msg Id #1 to procId O

Got msg #98 (40 bytes) from procId 0

Sending msg Id #98 to procId 0

Got msg #99 (40 bytes) from procId 0

Sending msg Id #99 to procId 0

Awaiting sync message from host...

[t=0x00000015:7b46cd4c2] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send:
no object for endpoint: 53

[t=0x00000015:7b6315fb] ti.ipc.rpmsg.MessageQCopy: MessageQCopy_send:

no object for endpoint: 53

References

[1] http://processors.wiki.ti.com/index.php/Linux_Utils_Overview
[2] http://gitorious.org/linux-davinci



http://processors.wiki.ti.com/index.php/Linux_Utils_Overview
http://gitorious.org/linux-davinci

Article Sources and Contributors

Article Sources and Contributors

IPC Install Guide Linux Source: http://ap-fpdsp-swapps.dal.design.ti.com/index.php?oldid=159725 Contributors: ChrisRing




	IPC Install Guide Linux
	Introduction 
	Install 
	Build 
	products.mak 
	ipc-linux.mak 
	ipc-bios.mak 

	Run 
	Configuring Kernel 
	OMAP-L138 

	Kernel Boot-up Parameters 
	Installing Tests 
	OMAP-L138 
	IPC Daemons and Drivers 
	Running Test Applications 




