
SYS/BIOS Inter-Processor
Communication (IPC) and I/O

User’s Guide

Literature Number: SPRUGO6D
September 2011

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except
where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is
an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related require-
ments concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-
related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against
any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection
with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-
designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Mailing Address: Texas Instruments, Post Office Box 655303 Dallas, Texas 75265
Copyright © 2011, Texas Instruments Incorporated

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications

Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers

Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps

DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy

DSP dsp.ti.com Industrial www.ti.com/industrial

Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video & Imaging www.ti.com/video

RFID www.ti-rfid.com Wireless Connectivity www.ti.com/wirelessconnectivity

OMAP Mobile Processors www.ti.com/omap TI E2E Community Home Page e2e.ti.com

This is a draft version printed from file: pref.fm on September 28, 2011
Preface

About This Guide

This document provides an overview of the Inter-Process
Communication (IPC) APIs. This version of this document is intended for
use with IPC version 1.24 on targets that use SYS/BIOS.

Previous versions of SYS/BIOS were called DSP/BIOS. The new name
reflects that this operating system can also be use on processors other
than DSPs.

Intended Audience

This document is intended for users of the IPC APIs and creators of
implementations of interfaces defined by IPC modules.

This document assumes you have knowledge of inter-process
communication concepts and the capabilities of the processors and
shared memory available to your application.

Notational Conventions

This document uses the following conventions:

❏ When the pound sign (#) is used in filenames or directory paths, you
should replace the # sign with the version number of the release you
are using. A # sign may represent one or more digits of a version
number.

❏ Program listings, program examples, and interactive displays are
shown in a mono-spaced font. Examples use bold for emphasis,
and interactive displays use bold to distinguish commands that you
enter from items that the system displays (such as prompts,
command output, error messages, etc.).

❏ Square brackets ([and]) identify an optional parameter. If you use
an optional parameter, you specify the information within the
brackets. Unless the square brackets are in a bold typeface, do not
enter the brackets themselves.
-iii

 Trademarks
Trademarks

The Texas Instruments logo and Texas Instruments are registered
trademarks of Texas Instruments. Trademarks of Texas Instruments
include: TI, DaVinci, the DaVinci logo, XDS, Code Composer, Code
Composer Studio, Probe Point, Code Explorer, DSP/BIOS, SYS/BIOS,
RTDX, Online DSP Lab, DaVinci, eXpressDSP, TMS320,
TMS320C6000, TMS320C64x, TMS320DM644x, and TMS320C64x+.

MS-DOS, Windows, and Windows NT are trademarks of Microsoft
Corporation.

UNIX is a registered trademark of The Open Group in the United States
and other countries.

Linux is a registered trademark of Linus Torvalds.

Solaris, SunOS, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc.

All other brand, product names, and service names are trademarks or
registered trademarks of their respective companies or organizations.

September 28, 2011
iv

This is a draft version printed from file: ipc_ugTOC.fm on September 28, 2011
Contents

1 About IPC .1-1
This chapter introduces IPC, a set of modules designed to facilitate inter-process communication.
1.1 What is IPC?. .1-2
1.2 Requirements .1-3
1.3 About this User Guide .1-3
1.4 Use Cases for IPC .1-4

1.4.1 Minimal Use Scenario .1-5
1.4.2 Data Passing Scenario. .1-6
1.4.3 Dynamic Allocation Scenario .1-7
1.4.4 Powerful But Easy-to-Use Messaging with MessageQ 1-8

1.5 Related Documents .1-9

2 The Input/Output Package .2-1
This chapter describes modules that can be used to handle input and output data.
2.1 Modules in IPC’s ti.sdo.io Package .2-2
2.2 Overview of Streams .2-3
2.3 Configuring a Driver and Acquiring a Driver Handle. .2-4
2.4 Streams .2-6

2.4.1 Creating and Deleting Streams .2-6
2.4.2 Streams and Error Blocks .2-7
2.4.3 Stream and the Synchronization Mechanisms .2-8
2.4.4 Using Streams with Tasks .2-9
2.4.5 Using Stream with Swis .2-16
2.4.6 Using Streams with Events .2-20
2.4.7 Using Streams with Generic Callbacks .2-24
2.4.8 Using Stream_read() and Stream_write() .2-24
2.4.9 Stream_abort() and Error Handling .2-25
2.4.10 Constraints When Using Streams .2-26

2.5 The IDriver Interface. .2-27
2.5.1 Using the Driver Template Generator .2-27
2.5.2 Driver create() Function .2-28
2.5.3 Driver delete() Function .2-28
2.5.4 IDriver_open() Function .2-28
2.5.5 IDriver_close() Function .2-30
2.5.6 IDriver_submit() Function .2-31
Contents v

 Contents
2.5.7 IDriver_control() Function . 2-32
2.5.8 Driver ISRs . 2-33

2.6 The IConverter Interface . 2-34
2.7 The IomAdapter Module . 2-36

2.7.1 Mapping IOM Functions to IDriver Functions . 2-36
2.8 Porting the Stream Module to Another Operating System . 2-37

3 The Inter-Processor Communication Package . 3-1
This chapter introduces the modules in the ti.sdo.ipc package.
3.1 Modules in the IPC Package. 3-2

3.1.1 Including Header Files . 3-4
3.1.2 Standard IPC Function Call Sequence . 3-5
3.1.3 Error Handling in IPC . 3-6

3.2 Ipc Module. 3-7
3.2.1 Ipc Module Configuration . 3-8
3.2.2 Ipc Module APIs . 3-10

3.3 MessageQ Module . 3-11
3.3.1 Configuring the MessageQ Module . 3-12
3.3.2 Creating a MessageQ Object . 3-13
3.3.3 Opening a Message Queue . 3-14
3.3.4 Allocating a Message . 3-15
3.3.5 Sending a Message . 3-17
3.3.6 Receiving a Message . 3-19
3.3.7 Deleting a MessageQ Object . 3-20
3.3.8 Message Priorities . 3-20
3.3.9 Thread Synchronization . 3-21
3.3.10 ReplyQueue . 3-22
3.3.11 Remote Communication via Transports . 3-23
3.3.12 Sample Runtime Program Flow (Dynamic). 3-25

3.4 ListMP Module . 3-26
3.5 Heap*MP Modules . 3-30

3.5.1 Configuring a Heap*MP Module . 3-30
3.5.2 Creating a Heap*MP Instance . 3-31
3.5.3 Opening a Heap*MP Instance . 3-32
3.5.4 Closing a Heap*MP Instance . 3-33
3.5.5 Deleting a Heap*MP Instance. 3-33
3.5.6 Allocating Memory from the Heap. 3-33
3.5.7 Freeing Memory to the Heap . 3-34
3.5.8 Querying Heap Statistics . 3-34
3.5.9 Sample Runtime Program Flow . 3-35

3.6 GateMP Module . 3-36
3.6.1 Creating a GateMP Instance. 3-36
3.6.2 Opening a GateMP Instance. 3-38
3.6.3 Closing a GateMP Instance . 3-38
3.6.4 Deleting a GateMP Instance . 3-38
3.6.5 Entering a GateMP Instance. 3-38
vi

Contents
3.6.6 Leaving a GateMP Instance .3-39
3.6.7 Querying a GateMP Instance .3-39
3.6.8 NameServer Interaction .3-39
3.6.9 Sample Runtime Program Flow (Dynamic) .3-40

3.7 Notify Module .3-41
3.8 SharedRegion Module .3-43

3.8.1 Adding Table Entries Statically. .3-45
3.8.2 Modifying Table Entries Dynamically .3-47
3.8.3 Using Memory in a Shared Region .3-47
3.8.4 Getting Information About a Shared Region .3-48

4 The Utilities Package .4-1
This chapter introduces the modules in the ti.sdo.utils package.
4.1 Modules in the Utils Package .4-2
4.2 List Module .4-2

4.2.1 Basic FIFO Operation of a List .4-2
4.2.2 Iterating Over a List .4-3
4.2.3 Inserting and Removing List Elements. .4-4
4.2.4 Atomic List Operations .4-5

4.3 MultiProc Module .4-6
4.3.1 Configuring Clusters With the MultiProc Module .4-8

4.4 NameServer Module. .4-11

5 Porting IPC .5-1
This chapter provides an overview of the steps required to port IPC to new devices or systems.
5.1 Interfaces to Implement .5-2
5.2 Other Porting Tasks .5-2

6 Optimizing IPC Applications .6-1
This chapter provides hints for improving the runtime performance and shared memory usage of
applications that use IPC.
6.1 Compiler and Linker Optimization .6-2
6.2 Optimizing Runtime Performance. .6-5
6.3 Optimizing Notify and MessageQ Latency .6-6

6.3.1 Choosing and Configuring Notify Drivers .6-7
6.3.2 Choosing and Configuring MessageQ Transports .6-8

6.4 Optimizing Shared Memory Usage. .6-9
6.5 Optimizing Local Memory Usage .6-11
6.6 Optimizing Code Size .6-11

A Rebuilding IPC .7-1
This appendix describes how to rebuild the IPC source code.
A.1 Overview. 7-2
A.2 Prerequisites. 7-2
A.3 Build Procedure . 7-2
A.4 Building Your Project Using a Rebuilt IPC . 7-4
Contents vii

 Contents
B Using IPC on Concerto Devices . 8-1
This appendix provides target-specific information about using IPC on Concerto devices.
B.1 Overview .8-2
B.2 Configuring Applications with IpcMgr .8-3
B.3 Examples for Concerto. .8-6
viii

Chapter 1

About IPC

This chapter introduces IPC, a set of modules designed to facilitate inter-
process communication.

1.1 What is IPC?. 1–2

1.2 Requirements. 1–3

1.3 About this User Guide. 1–3

1.4 Use Cases for IPC . 1–4

1.5 Related Documents . 1–9

Topic Page
1-1

What is IPC?
1.1 What is IPC?

IPC is a component containing packages that are designed to allow
communication between processors in a multi-processor environment
and communication to peripherals. This communication includes
message passing, streams, and linked lists. These work transparently in
both uni-processor and multi-processor configurations.

The ti.sdo.ipc package contains modules and interfaces for inter-
processor communication. The ti.sdo.io package contains modules and
interfaces to support peripheral communication. The ti.sdo.utils package
contains utility modules for supporting the ti.sdo.ipc modules and other
modules.

IPC is designed for use on processors running SYS/BIOS applications.
This is typically a DSP, but may be an ARM device in some cases.
Previous versions of SYS/BIOS were called DSP/BIOS. The new name
reflects that this operating system can also be use on processors other
than DSPs.

IPC can be used to communicate with the following:

❏ other threads on the same processor

❏ threads on other processors running SYS/BIOS

❏ threads on GPP processors running SysLink

IPC was designed with the needs of a wide variety of users in mind. In
the interest of providing modules that are usable by all groups, the IPC
modules are designed to limit the API actions to the basic functionality
required. For example, they do not perform their own resource
management. It is the responsibility of the calling thread to manage
resources and similar issues that are not managed by the IPC modules.

DSP 1

DSP 2

DSP n

GPP 1

GPP 2

GPP n
1-2

Requirements
1.2 Requirements

IPC is installed as part of the Code Composer Studio installation. That
installation also installs the versions of XDCtools and SYS/BIOS that you
will need.

IPC can be used on hosts running any of the following operating systems:

❏ Microsoft Windows XP (SP2 or SP3), Vista, or 7

❏ Linux (Redhat 4 or 5)

If you are installing separately from CCS, see the User_install.pdf file in
the <ipc_install_dir>/docs directory for installation information and
instructions. This file also provides instructions for building the examples
outside the CCS environment.

IPC makes use of the following other software components and tools,
which must be installed in order to use IPC. See the IPC release notes
for the specific versions required by your IPC installation.

❏ Code Composer Studio (CCStudio)

❏ SYS/BIOS (installed as part of CCStudio)

❏ XDCtools (installed as part of CCStudio)

1.3 About this User Guide

See the installation guide provided with IPC for installation information
and instructions.

❏ Chapter 2, "The Input/Output Package," describes the modules in the
ti.sdo.io package.

❏ Chapter 3, "The Inter-Processor Communication Package,“
describes the modules in the ti.sdo.ipc package.

❏ Chapter 4, “The Utilities Package,“ describes the modules in the
ti.sdo.utils package.

❏ Chapter 5, “Porting IPC,“ provides an overview of the steps required
to port IPC to new devices or systems.

❏ Chapter 6, “Optimizing IPC Applications," provides hints for
improving the runtime performance and shared memory usage of
applications that use IPC.

❏ Appendix A, "Rebuilding IPC", explains how to rebuild the IPC
libraries if you modify the source files.

❏ Appendix B, "Using IPC on Concerto Devices", explains how to use
IPC if you are designing applications for Concerto F28M35x devices.
About IPC 1-3

Use Cases for IPC
Note: Please see the release notes in the installation before starting to use
IPC. The release notes contain important information about feature
support, issues, and compatibility information for a particular release.

1.4 Use Cases for IPC

You can use IPC modules in a variety of combinations. From the simplest
setup to the setup with the most functionality, the use case options are as
follows. A number of variations of these cases are also possible:

❏ Minimal use of IPC. This scenario performs inter-processor
notification. The amount of data passed with a notification is
minimal—typically on the order of 32 bits. This scenario is best used
for simple synchronization between processors without the overhead
and complexity of message-passing infrastructure. The
<ipc_install_dir>/packages/ti/sdo/ipc/examples/multicore/<platform_
name> directory contains a platform-specific “notify” example for this
scenario. See Section 1.4.1.

❏ Add data passing. This scenario adds the ability to pass linked list
elements between processors to the previous minimal scenario. The
linked list implementation may optionally use shared memory and/or
gates to manage synchronization. See Section 1.4.2.

❏ Add dynamic allocation. This scenario adds the ability to
dynamically allocate linked list elements from a heap. See Section
1.4.3.

❏ Powerful but easy-to-use messaging. This scenario uses the
MessageQ module for messaging. The application configures other
modules. However, the APIs for other modules are then used
internally by MessageQ, rather than directly by the application. The
<ipc_install_dir>/packages/ti/sdo/ipc/examples/multicore/<platform_
name> directory contains a platform-specific “message” example for
this scenario. See Section 1.4.4.

In the following sections, figures show modules used by each scenario.

❏ Blue boxes identify modules for which your application will call C API
functions other than those used to dynamically create objects.

❏ Red boxes identify modules that require only configuration by your
application. Static configuration is performed in a RTSC configuration
script (.cfg). Dynamic configuration is performed in C code.

❏ Grey boxes identify modules that are used internally but do not need
to be configured or have their APIs called.
1-4

Use Cases for IPC
1.4.1 Minimal Use Scenario

This scenario performs inter-processor notification using a Notify driver,
which is used by the Notify module. This scenario is best used for simple
synchronization in which you want to send a message to another
processor to tell it to perform some action and optionally have it notify the
first processor when it is finished.

In this scenario, you make API calls to the Notify module. For example,
the Notify_sendEvent() function sends an event to the specified
processor. You can dynamically register callback functions with the Notify
module to handle such events.

You must statically configure MultiProc module properties, which are
used by the Notify module.

The amount of data passed with a notification is minimal. You can send
an event number, which is typically used by the callback function to
determine what action it needs to perform. Optionally, a small “payload”
of data can also be sent.

The <ipc_install_dir>/packages/ti/sdo/ipc/examples/multicore/
<platform_name> directory contains a platform-specific “notify” example
for this scenario. See Section 3.7, Notify Module and Section 4.3,
MultiProc Module.

Note: If you are using a Concerto F28M35x device, this scenario is
supported. See Appendix B for details.

Notify module

MultiProc moduleuses

Key

= call APIs to use

= configure statically
 (RTSC) or
 dynamically (C)
About IPC 1-5

Use Cases for IPC
1.4.2 Data Passing Scenario

In addition to the IPC modules used in the previous scenario, you can use
the ListMP module to share a linked list between processors.

In this scenario, you make API calls to the Notify and ListMP modules.

The ListMP module is a doubly-linked-list designed to be shared by
multiple processors. ListMP differs from a conventional “local” linked list
in the following ways:

❏ Address translation is performed internally upon pointers contained
within the data structure.

❏ Cache coherency is maintained when the cacheable shared memory
is used.

❏ A multi-processor gate (GateMP) is used to protect read/write
accesses to the list by two or more processors.

ListMP uses SharedRegion’s lookup table to manage access to shared
memory, so configuration of the SharedRegion module is required.

Internally, ListMP can optionally use the NameServer module to manage
name/value pairs. The ListMP module also uses a GateMP object, which
your application must configure. The GateMP is used internally to
synchronize access to the list elements.

See Section 3.4, ListMP Module, Section 3.6, GateMP Module, Section
3.8, SharedRegion Module, and Section 4.4, NameServer Module.

Note: If you are using a Concerto F28M35x device, this scenario is not
supported due to shared memory limitations. See Appendix B for details.

uses MultiProc SharedRegion

NameServer

GateMP

uses

ListMPNotify
1-6

Use Cases for IPC
1.4.3 Dynamic Allocation Scenario

To the previous scenario, you can add dynamic allocation of ListMP
elements using one of the Heap*MP modules.

In this scenario, you make API calls to the Notify and ListMP modules and
a Heap*MP module.

In addition to the modules that you configured for the previous scenario,
the Heap*MP modules use a GateMP that you must configure. You may
use the same GateMP instance used by ListMP.

See Section 3.5, Heap*MP Modules and Section 3.6, GateMP Module.

Note: If you are using a Concerto F28M35x device, this scenario is not
supported due to shared memory limitations. See Appendix B for details.

Notify

uses MultiProc SharedRegion

NameServer

GateMP

uses

HeapBufMP or
HeapMultiBufMP
or HeapMemMP

uses

ListMP
About IPC 1-7

Use Cases for IPC
1.4.4 Powerful But Easy-to-Use Messaging with MessageQ

Finally, to use the most sophisticated inter-processor communication
scenario supported by IPC, you can add the MessageQ module.

In this scenario, you make API calls to the MessageQ module for inter-
processor communication.

API calls made to the Notify, ListMP, and Heap*MP modules in the
previous scenarios are not needed. Instead, your application only needs
to configure the MultiProc and SharedRegion modules.

The Ipc_start() API call in your application’s main() function takes care of
configuring all the modules shown here in gray: the Notify, HeapMemMP,
ListMP, TransportShm, NameServer, and GateMP modules.

It is possible to use MessageQ in a single-processor application. In such
a case, only API calls to MessageQ and configuration of any
xdc.runtime.IHeap implementation are needed.

The <ipc_install_dir>/packages/ti/sdo/ipc/examples/multicore directory
contains a “message” example for this scenario.

Note: If you are using a Concerto F28M35x device, this scenario is
supported, but fewer modules are used due to shared memory limitations.
See Appendix B for details.

Notify MultiProc

NameServer

SharedRegion

GateMPTransportShm

ListMP

HeapBufMP or
HeapMultiBufMP
or HeapMemMP

uses

MessageQ uses

uses
1-8

Related Documents
1.5 Related Documents

To learn more about IPC APIs and the software products used with it,
refer to the following API documentation:

IPC online Doxygen-based documentation. Located at
<ipc_install_dir>/docs/doxygen/html/index.html. Use this help system to
get detailed information about APIs for modules in the ti.ipc package.
This system does not contain information about static configuration using
XDCtools. This documentation details APIs for all IPC modules that have
common header files (see Section 3.1.1). Use this documentation for
information about the following aspects of IPC:

❏ Runtime APIs

❏ Status codes

❏ Instance creation parameters

❏ Type definitions

However, all SYS/BIOS-specific documentation, such as build-time
configuration, is located in CDOC (see below).

IPC online CDOC documentation (also called “CDOC”). Open with
CCS online help or run <ipc_install_dir>/docs/cdoc/index.html. Use this
help system to get information about static configuration of IPC modules
and objects using XDCtools and about Error/Assert messages. This help
system also contains information about APIs in IPC packages other than
ti.ipc and for use if you are building your own modules based on IPC
modules and interfaces.

Important: Do not use the CDOC help system to get information about
APIs and other aspects of modules in the ti.ipc package. The information in
the CDOC system for ti.sdo.ipc package modules does not reflect the
interfaces provided by the recommended header files.

❏ RTSC-Pedia Wiki: http://rtsc.eclipse.org/docs-tip

❏ Texas Instruments Developer Wiki: http://wiki.davincidsp.com

❏ SYS/BIOS 6 Release Notes:
(BIOS_INSTALL_DIR/Bios_6_##_release_notes.html).

❏ SYS/BIOS 6 Getting Started Guide:
(BIOS_INSTALL_DIR/docs/Bios_Getting_Started_Guide.pdf).

❏ XDCtools and SYS/BIOS online help: Open with CCS online help.

❏ TMS320 SYS/BIOS 6 User’s Guide (SPRUEX3)

❏ In CCS, templates for projects that use IPC are available when you
create a CCS project with RTSC support enabled.
About IPC 1-9

Related Documents
1-10

Chapter 2

The Input/Output Package

This chapter describes modules that can be used to handle input and output
data.

2.2 Overview of Streams . 2-3

2.3 Configuring a Driver and Acquiring a Driver Handle 2-4

2.4 Streams . 2-6

2.5 The IDriver Interface. 2-27

2.6 The IConverter Interface . 2-34

2.7 The IomAdapter Module . 2-36

2.8 Porting the Stream Module to Another Operating System. 2-37

Topic Page
2-1

Modules in IPC’s ti.sdo.io Package
2.1 Modules in IPC’s ti.sdo.io Package

The ti.sdo.io package contains the following modules, which are described in
this chapter:

❏ DriverTable. See Section 2.3, Configuring a Driver and Acquiring a
Driver Handle.

❏ DriverTypes. See Section 2.5, The IDriver Interface.

❏ IConverter. See Section 2.6, The IConverter Interface.

❏ IDriver. See Section 2.5, The IDriver Interface.

❏ Stream. See Section 2.4, Streams.

❏ Transformer. See Section 2.6, The IConverter Interface.

❏ Generator. See Section 2.4.4, Using Streams with Tasks.

❏ IomAdapter. See Section 2.7, The IomAdapter Module.

❏ DriverTemplate. See Section 2.5.1, Using the Driver Template
Generator.
2-2

Overview of Streams
2.2 Overview of Streams

This chapter describes how you can use “streams” for data input and output.
You use the Stream module to send data to an output channel or receive data
from an input channel.

Streams are an abstraction of device drivers. They allow you to develop
applications that do not directly interact with driver code. This allows the
application to be developed in a driver-independent and platform-
independent manner.

The Stream module also allows your application to process one buffer while
the driver is working on another buffer. This improves performance and
minimizes the copying of data. The typical use case for the Stream module is
that an application gets a buffer of data from an input channel, processes the
data and sends the data to an output channel.

The following figure shows a typical flow of data through an output channel.

In this use case, the application calls Stream module APIs. Those APIs
manage buffers and the driver abstraction. Internally, the Stream module
APIs calls the implementation of the IDriver interface for the driver.

AApppplliiccaattiioonn

SSttrreeaamm MMoodduullee

DDrriivveerr MMoodduullee

DDeevviiccee

IIDDrriivveerr iinntteerrffaaccee

SSttrreeaamm AAPPIIssffuullll bbuuffffeerr eemmppttyy bbuuffffeerr

iinntteerrrruupptt

DDaattaa PPrroocceessssiinngg

BBuuffffeerr MMaannaaggeemmeenntt
DDrriivveerr aabbssttrraaccttiioonn
SSyynncc//AAssyynncc ssuuppppoorrtt

DDeevviiccee ssppeecciiffiicc
CCaallllbbaacckk bbaasseedd

The Input/Output Package 2-3

Configuring a Driver and Acquiring a Driver Handle
2.3 Configuring a Driver and Acquiring a Driver Handle

Drivers are RTSC modules that inherit from ti.sdo.io.IDriver. A driver module
manages peripherals. A driver modules manages all instances of a
peripheral. For example, a hypothetical third-party Uart driver manages all
UARTs in the system, and a Uart instance equates to a UART device.

An application configures a driver and gets a handle to a driver instance by
following these steps:

1) Enable modules. The static configuration (cfg file) must include a
xdc.useModule for each module it will use. For example, here are the
xdc.useModule statements you need for the modules used in this section:

 var Uart = xdc.useModule('thirdparty.drivers.Uart');

 var DriverTable = xdc.useModule('ti.sdo.io.DriverTable');

 var Stream = xdc.useModule('ti.sdo.io.Stream');

2) Configure the driver module. This step is optional because the driver
may have defaults that suit the application. The driver is configured as
part of the static configuration (cfg file). Typically, module-level properties
apply to all instances of the device driver. For example, DMA support and
the number of channels allowed might be two such properties. The driver
may also allow the setting of default channel properties as part of the
static configuration. For example:

 Uart.edmaSupport = true;

3) Create a driver instance. An application creates a driver instance to
mark a peripheral for use. This step can be performed in the static
configuration or at run-time. The driver will support resource
management and prevent the peripheral from being used (created)
again. Some drivers manage several peripherals; in such cases, the
driver allows the application to specify a deviceId as part of its create
parameters. A driver may support other create() parameters, which
typically apply to all channels supported by an instance.

Configuration example: This CFG example uses XDCtools to create a
UART driver instance called “uart” with the default properties.

 var uartParams = new Uart_Params;

 uartParams.instance.name = "uart";

 var uartHdl = Uart.create(uartParams);
2-4

Configuring a Driver and Acquiring a Driver Handle
Run-time example: This C example creates a UART driver instance
called "uart" with the default properties.

 Uart_Handle uartHdl;

 Uart_Params uartParams;

 Uart_Params_init(&uartParams);

 uartParams.instance->name = "uart";

 uartHdl = Uart_create(&uartParams, &eb);

4) Add the device driver handle to the driver table. Before the Stream
module APIs can use a device driver instance, the instance needs to be
added to a driver table managed by the DriverTable module. This table
associates names with drivers. The name has to have a particular
format—it has to begin with a "/". (See Section 2.6 for the reasons behind
this convention.) This step can be performed in the static configuration or
at run-time.

Configuration example: This statement associates the uartHdl you
obtained in the previous step with the name "/uart0". Note: A slash "/" is
required at the beginning of a driver name.

 DriverTable.addMeta("/uart0", uartHdl);

Run-time example: This C statement associates the uartHdl you
obtained in the previous step with the name "/uart0".

 DriverTable_add("/uart0", uartHdl, &eb);
The Input/Output Package 2-5

Streams
2.4 Streams

This section describes how to create and use streams as abstractions for
drivers after you have associated a driver handle with a driver name as
described in the previous section.

2.4.1 Creating and Deleting Streams

An application creates a Stream by specifying a device driver by name. The
name is the same as the name you associated with a driver in the
DriverTable.

One important point is that a Stream instance corresponds to a single channel
(either input or output). Several Stream instances can be created using the
same driver instance. If the driver instance supports two channels, then two
Stream instances can be created using the same driver.

The Stream_create() API creates a Stream instance. It has the following
parameters:

Stream_Handle Stream_create(

 String name,

 UInt mode,

 const Stream_Params *prms,

 xdc_runtime_Error_Block *eb)

The Stream_Params allows you to specify the following parameters:

struct Stream_Params {

 xdc_runtime_IInstance_Params *instance;

 UInt maxIssues;

 xdc_runtime_IHeap_Handle packetHeap;

 xdc_runtime_knl_ISync_Handle sync;

 UArg chanParams;

};

The driver name and mode are required parameters for creating a Stream
instance. The driver name must be present in the driver table.

The mode is either Stream_INPUT or Stream_OUPUT.

Stream_Params allow you to set optional parameters.

❏ The "instance" field allows you to specify a name for the Stream instance.
The name will show up in the RTA and ROV run-time tools.

❏ The "maxIssues" field specifies the maximum numbers of buffers that can
be issued to the stream using Stream_issue() before a buffer is reclaimed
using Stream_reclaim(). This is 2 by default. If you will use Stream_read()
and Stream_write() only, you can set this parameter to one.
2-6

Streams
❏ The "packetHeap" specifies the heap that the Stream instance can use to
allocate IO packets that are used internally to submit IO jobs to the driver.
See Section 2.5.6 for details on IO Packets.

❏ The "sync" field selects a synchronization mechanism for that Stream
instance. When this is left at its default of NULL, Stream creates a
Semaphore instance for synchronization. See Section 2.4.3 for more on
synchronization mechanisms.

❏ The "chanParams" configures the driver channel and is sent along to the
driver’s open() call. The chanParams are driver-specific. Typically drivers
allow default channel params to be statically configured. To override
defaults, the client can pass chanParams down to the driver by setting
the chanParams field in Stream.Params.

Stream_create() also takes an Error_Block as an argument and can fail.
Stream_create() returns a Stream_Handle that can then be used to send or
receive data.

See the online documentation for more about Stream_create().

Important Note: A Stream_Handle cannot be used by more than one task
simultaneously. One task must finish a Stream_read() or Stream_write() or
Stream_issue()/Stream_reclaim() before another Task can use the same
Stream_Handle. It is safer if a Stream_Handle is used only by a single task.

Stream_delete() deletes a stream and frees all resources allocated during
Stream_create(). This frees up the driver channel in use.

2.4.2 Streams and Error Blocks

A number of functions in the ti.sdo.io package use an Error_Block as an
argument. An Error_Block is a structure defined by the xdc.runtime.Error
module. You can create and use an Error_Block as follows:

#include <xdc/runtime/Error.h>

Error_Block eb; /* usually global */

...

Error_init(&eb); /* usually in main() */

...

Stream_issue(handleIn, pbuf, BUFSIZE, NULL, &eb);

Your application can then test the value in "eb" to see if what error was
returned.
The Input/Output Package 2-7

Streams
When you are first developing an application, you may want to simply pass
NULL instead of &eb for such Error_Block arguments. If an error occurs, the
NULL will cause the program to fail with a System_abort(), making it relatively
easy to debug.

2.4.3 Stream and the Synchronization Mechanisms

The Stream module uses xdc.runtime.knl.Sync for synchronization. The
xdc.runtime.knl.Sync module provides two main functions Sync_signal() and
Sync_wait().

These functions take an ISync_Handle as the first parameter. An
ISync_Handle must first be obtained by a module that implements the ISync
interface. Various implementations of these interfaces handle
synchronization of Streams in different ways.

The xdc.runtime.knl package provides the following implementations of the
ISync interface:

❏ SyncSemThread (the default) is a BLOCKING implementation that is
built on top of the xdc.runtime.knl.SemThread module.

❏ SyncGeneric can be used with any two functions that provide the
ISync_signal() and ISync_wait() functionality. See Section 2.4.7.

❏ SyncNull performs no synchronization.

SYS/BIOS contains several implementations of the ISync interface in the
ti.sysbios.syncs package:

❏ SyncSem is based on Semaphores and is BLOCKING. See Section
2.4.4.

❏ SyncSwi is based on Swis and is NON-BLOCKING. See Section 2.4.5.

❏ SyncEvent is based on Events and is NON-BLOCKING. See Section
2.4.6.

Instead of tying itself to a particular module for synchronization, the Stream
module allows you to pick an ISync implementation module. You can select
an ISync implementation for a stream instance using the instance-level
configuration parameter "sync".

If you pass NULL for the "sync" parameter to Stream_create(), the Stream
module creates a SyncSemThread instance for the Stream instance. This
translates to a Semaphore instance for this Stream instance.

The Stream module calls ISync_signal() in the callback path when IO
completes. It calls ISync_wait() from Stream_reclaim() when IO has not been
completed.
2-8

Streams
2.4.4 Using Streams with Tasks

Stream_issue() and Stream_reclaim() can be used with Task threads. This is
the most common use case. The application first creates a Stream instance.
By default Stream uses SyncSemThread.

The application calls Stream_issue() with a buffer and size. It is possible to
pass in a semaphore instance owned by the application during
Stream_create(). See Section 2.4.4.1 for details.

Stream_issue() sends a buffer to a stream. No buffer is returned, and the
application no longer owns the buffer. Stream_issue() returns control to the
task without blocking. The buffer has been given to the driver for processing.
Internally, Stream uses a DriverTypes_Packet to submit a job to the driver.

At a later time when the application is ready to get the buffer back,
Stream_reclaim() is called. This call to Stream_reclaim() blocks if the driver
has not completed processing the IO packet.

When the driver has finished processing the buffer, an ISR occurs and the
driver performs a callback to Stream. Stream receives the processed IO
packet in the callback context, queues it up and calls ISync_signal(). This call
is routed to SyncSemThread_signal(), which posts the Semaphore. Control
returns to the application task and the application can work on the returned
buffer.

If a timeout occurs, the application needs to call Stream_abort() to force the
driver to return buffers currently being processed and queued for processing.

Is it possible for Stream_reclaim() to raise an error. This error is reported by
the driver in the IO packet. Stream_reclaim() also raises an error if no buffers
have been issued.

The Stream_issue/Stream_reclaim APIs provide flexibility by allowing the
application to control the number of outstanding buffers at runtime. A client
can send multiple buffers to a stream without blocking by using
Stream_issue(). The buffers are returned, at the client's request, by calling
Stream_reclaim(). This allows the client to choose how deep to buffer a
device and when to block and wait for a buffer.

The Stream_issue/Stream_reclaim APIs guarantee that the client's buffers
are returned in the order in which they were issued. This allows a client to use
memory from any source for streaming. For example, if a SYS/BIOS task
receives a large buffer, that task can pass the buffer to the stream in small
pieces simply by advancing a pointer through the larger buffer and calling
Stream_issue() for each piece. This works because each piece of the buffer
is guaranteed to come back in the same order it was sent.
The Input/Output Package 2-9

Streams
The Stream_issue() API has the following parameters:

Void Stream_issue(

 Stream_Handle handle,

 Ptr buf,

 SizeT size,

 UArg arg,

 Error_Block *eb);

The Stream_reclaim() API has the following parameters:

SizeT Stream_reclaim(

 Stream_Handle handle,

 Ptr *pbufp,

 UInt timeout,

 UArg *parg,

 Error_Block *eb);

See the online documentation for more about these APIs.

The "arg" parameter is not interpreted by SYS/BIOS, but is offered as a
service to the application. The arg parameter can be used by the application
to associate some data with the buffer—for example, the format of data in the
buffer. This arg is passed down to the driver and returned to the application
through Stream_reclaim(). The application can use the arg to communicate
to the driver. For example, arg could be used to send a timestamp to an
output device, indicating exactly when the data is to be rendered. The driver
treats the arg as a read-only field.
2-10

Streams
The following figure shows the control flow for Streams used with Tasks.

Application Task Stream Driver Peripheral

Stream_issue()

IDriver_submit()

busy

Full buffer

Queue

queue up
IO packet

Stream_reclaim()

Block

Unblock

return
processed IO

ISync_signal()

ISR

End ISR

return from
reclaim()

return from
issue()

Queue

idle task
runs

app task
runs

Semaphore_post()

timeline

Full
buffer

Full
buffer

Full
buffer IO

packet

Full
buffer IO

packet

IO
packet

IO
packet
The Input/Output Package 2-11

Streams
The following example uses Stream_issue() and Stream_reclaim() in a Task.
"Generator" is a driver provided with SYS/BIOS. All instances are
dynamically created in this example.

Configuration code: The following configuration file excerpt includes an
xdc.useModule statement for each IO-related module used in the application:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Task = xdc.useModule('ti.sysbios.knl.Task');

var Stream = xdc.useModule('ti.sdo.io.Stream');

var DriverTable = xdc.useModule('ti.sdo.io.DriverTable');

var Generator = xdc.useModule('ti.sdo.io.drivers.Generator');

DriverTable.maxRuntimeEntries = 1;

Run-time code: This C code uses Stream_issue() and Stream_reclaim() in a
Task:

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <xdc/cfg/global.h>

#include <ti/sdo/io/Stream.h>

#include <ti/sdo/io/DriverTable.h>

#include <ti/sdo/io/drivers/Generator.h>

#define BUFSIZE 16

#define NBUFS 5

Void genSine(Ptr bufp, size_t nmaus, UArg arg);

Void myPrintf(Ptr bufp, size_t nmaus, UArg arg);

Int buf[BUFSIZE];

Ptr pbuf = &buf;

Int count = 1;

Stream_Handle handleIn, handleOut;

Generator_ChanParams genParamsIn = {genSine, NULL, FALSE};

Generator_ChanParams genParamsOut = {myPrintf, NULL, FALSE};

Void tsk0Fxn(UArg arg1, UArg arg2);
2-12

Streams
/*

 * ======== genSine ========

 * Function to simulate input channel. Generates a sine wave.

 */

Void genSine(Ptr bufp, size_t nmaus, UArg arg)

{

 Int i;

 Int *dst = (Int *)bufp;

 static Int data[16] = {

 0, 11793, 22594, 29956, 32767, 29956, 22594, 11793,

 0, -11793, -22594, -29956, -32767, -29956, -22594, -11793

 };

 for (i = 0; i < nmaus / sizeof(Int); i++) {

 dst[i] = data[i & 0xf];

 }

}

/*

 * ======== myPrintf ========

 * Function to simulate output channel. Prints the buffer

 */

Void myPrintf(Ptr bufp, size_t nmaus, UArg arg)

{

 Int i;

 Int *src = (Int *)bufp;

 for (i = 0; i < (nmaus / sizeof(Int)); i++) {

 System_printf("%d\n", src[i]);

 }

}

/*

 * ======== main ========

 */

Int main(Int argc, Char* argv[])

{

 Stream_Params streamParams;

 Generator_Handle driverHdl;

 /* Create a Generator instance */

 driverHdl = Generator_create(NULL, NULL);

 /* Add Generator instance to DriverTable */

 DriverTable_add("/genDevice",

 Generator_Handle_upCast(driverHdl), NULL);
The Input/Output Package 2-13

Streams
 /* Create input stream */

 Stream_Params_init(&streamParams);

 streamParams.chanParams = (UArg)&genParamsIn;

 handleIn = Stream_create("/genDevice", Stream_INPUT,

 &streamParams, NULL);

 /* Create output stream */

 streamParams.chanParams = (UArg)&genParamsOut;

 handleOut = Stream_create("/genDevice", Stream_OUTPUT,

 &streamParams, NULL);

 Task_create(tsk0Fxn, NULL, NULL);

 BIOS_start();

 return(0);

}

/*

 * ======== tsk0Fxn ========

 * Task that owns input channel and output channel stream.

 */

Void tsk0Fxn (UArg arg1, UArg arg2)

{

 for (;;) {

 /* buf gets filled with sine data */

 Stream_issue(handleIn, pbuf, BUFSIZE, NULL, NULL);

 Stream_reclaim(handleIn, &pbuf, BIOS_WAIT_FOREVER,

 NULL, NULL);

 System_printf("Printing sine data %dth time\n", count);

 /* buf filled with sine data is printed out */

 Stream_issue(handleOut, pbuf, BUFSIZE, NULL, NULL);

 Stream_reclaim(handleOut, &pbuf, BIOS_WAIT_FOREVER,

 NULL, NULL);

 count++;

 if (count > NBUFS) {

 BIOS_exit(0);

 }

 }

}

2-14

Streams
2.4.4.1 Using a Semaphore Instance Created by the Application with a Stream Instance

There may be cases where the application does not want Stream to create a
Semaphore for synchronization, and instead wants to supply its own
Semaphore to Stream. The following code snippet shows how to do this.

#include <ti/sysbios/syncs/SyncSem.h>

#include <ti/sysbios/ipc/Semaphore.h>

#include <ti/sdo/io/Stream.h>

/*

* ======== main ========

*/

Int main(Int argc, Char* argv[])

{

 Stream_Params streamParams;

 SyncSem_Params syncParams;

 SyncSem_Handle syncSem;

 /* Create input stream */

 SyncSem_Params_init(&syncParams);

 syncParams.sem = Semaphore_create(0, NULL, NULL);

 syncSem = SyncSem_create(&syncParams, NULL);

 Stream_Params_init(&streamParams);

 streamParams.chanParams = (UArg)&genParamsIn;

 streamParams.sync = SyncSem_Handle_upCast(syncSem);

 handleIn = Stream_create("/genDevice", Stream_INPUT,

 &streamParams, NULL);

}

The Input/Output Package 2-15

Streams
2.4.5 Using Stream with Swis

Stream_issue() and Stream_reclaim() can also be used with Swi threads. The
client first creates a Stream Instance. The application has to populate the
"sync" field in the Stream_Params struct. This sync field needs to be
assigned to a SyncSwi instance.

The application needs to follow these steps to get a SyncSwi_Handle.

1) Create a Swi instance.

2) Populate the "swi" field of a SyncSwi_Params struct with the Swi_Handle
received in the previous step.

3) Create a SyncSwi instance using the SyncSwi_Params struct.

4) Populate the "sync" field in Stream_Params struct with the
SyncSwi_Handle received from the previous step.

The Stream module calls ISync_signal() in the callback path when IO
completes. This results in a Swi_post(). The swi runs and calls
Stream_reclaim() to get back the processed buffer.

SyncSwi_wait() does nothing and returns FALSE for timeout. The data flow is
shown in the following figure.
2-16

Streams
Application Swi Stream Driver Peripheral

Stream_issue()

IDriver_submit()

busy

Full buffer

Queue

queue up
IO packet

App does other work

return
processed IO

ISync_signal()

ISR

End ISR

return
processed IO

Stream_reclaim()

return from
issue()

Queue

Swi runs

Swi_post()

timeline

Full
buffer

Full
buffer

Full
buffer IO

packet

Full
buffer IO

packet

IO
packet

IO
packet
The Input/Output Package 2-17

Streams
The following example uses Stream_issue() and Stream_reclaim() in a Swi.
"Generator" is a driver provided with SYS/BIOS. All instances are statically
created in this example. This example uses the genSine and myPrintf
functions from the previous section; they are not repeated in this example.

Configuration code: The following configuration file excerpt statically
creates all the instances used in the application:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Swi = xdc.useModule('ti.sysbios.knl.Swi');

var Stream = xdc.useModule('ti.sdo.io.Stream');

var Generator = xdc.useModule('ti.sdo.io.drivers.Generator');

var SyncSwi = xdc.useModule('ti.sysbios.syncs.SyncSwi');

var DriverTable = xdc.useModule('ti.sdo.io.DriverTable');

/* create a Swi instance */

var swi0 = Swi.create("&swi0Fxn");

/* create a generator instance and add to DriverTable */

var driverHdl = Generator.create();

DriverTable.addMeta("/genDevice", driverHdl);

/* Prep for SyncSwi instance */

var syncPrms = new SyncSwi.Params();

syncPrms.swi = swi0;

/* input channel creation */

var genParamsIn = new Generator.ChanParams();

genParamsIn.userFxn = "&genSine";

genParamsIn.userArg = null;

genParamsIn.async = true;

var streamPrms = new Stream.Params();

streamPrms.chanParams = genParamsIn;

streamPrms.sync = SyncSwi.create(syncPrms);

Program.global.handleIn = Stream.create("/genDevice",
Stream.INPUT, streamPrms);
2-18

Streams
/* output channel creation */

var genParamsOut = new Generator.ChanParams();

genParamsOut.userFxn = "&myPrintf";

genParamsOut.userArg = null;

genParamsOut.async = true;

var streamPrms = new Stream.Params();

streamPrms.chanParams = genParamsOut;

streamPrms.sync = SyncSwi.create(syncPrms);

Program.global.handleOut = Stream.create("/genDevice",
Stream.OUTPUT, streamPrms);

Run-time code: This C code uses Stream_issue() and Stream_reclaim() in a
Swi:

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Swi.h>

#include <ti/sdo/io/Stream.h>

#define BUFSIZE 128

Int buf[BUFSIZE];

Ptr pbuf = &buf;

extern Stream_Handle handleIn, handleOut;

Int count = 0;

/*

 * ======== main ========

 */

Int main(Int argc, Char* argv[])

{

 Stream_issue(handleIn, &buf, BUFSIZE, NULL, NULL);

 BIOS_start();

 return(0);

}

The Input/Output Package 2-19

Streams
/*

 * ======== swi0Fxn ========

 */

Void swi0Fxn (UArg arg1, UArg arg2)

{

 Stream_reclaim(handleIn, &pbuf, BIOS_WAIT_FOREVER,

 NULL, NULL);

 /* work on buffer here */

 Stream_issue(handleIn, pbuf, BUFSIZE, NULL, NULL);

 count++;

 if (count >= 5) {

 BIOS_exit(0);

 }

}

2.4.6 Using Streams with Events

There are cases where a Task needs to wait on multiple events. For example,
a Task may need to wait for a buffer from an input channel or a message from
the host. In such cases, the Task should use the Event_pend() API to "wait
on multiple" items. See the SYS/BIOS User’s Guide (SPRUEX3) for more
information on Events.

In order to use Streams with the Event module, the Stream needs to be
created using the following steps:

1) Create an Event instance.

2) Populate the "event" field of the SyncEvent_Params struct with the
Event_Handle received from the previous step.

3) Create a SyncEvent instance using the SyncEvent_Params struct.

4) Populate the "sync" field in the Stream_Params struct with the
SyncEvent_Handle received from the previous step.

For the example later in this section, the application first primes the channel
by calling Stream_issue(). When the worker task runs, it calls Event_pend()
and BLOCKS waiting for IO completion.

When IO is complete, the Stream module calls ISync_signal(), which results
in an Event_post() call. The Task wakes up, checks which event happened,
and calls Stream_reclaim() to get the processed buffer.
2-20

Streams
Application Task Stream Driver Peripheral

Stream_issue()

IDriver_submit()

busy

Full buffer

Queue

queue up
IO packet

Event_pend()

Block

Unblock

return
processed IO

ISync_signal()

ISR

End ISR

Call
Stream_reclaim()

return from
issue()

Queue

idle task
runs

app task
runs

Event_post()

timeline

Full
buffer

Full
buffer

Full
buffer IO

packet

Full
buffer IO

packet

IO
packet

IO
packet
The Input/Output Package 2-21

Streams
The following example uses Stream_issue() and Stream_reclaim() with an
Event. "Generator" is a driver provided with SYS/BIOS. The Event and the
Generator driver are statically created in this example. This example uses the
genSine and myPrintf functions from the previous section; they are not
repeated in this example.

Configuration code: The following configuration file excerpt statically
creates all the Event and Generator instances used in the application:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

var Task = xdc.useModule('ti.sysbios.knl.Task');

var Stream = xdc.useModule('ti.sdo.io.Stream');

var Event = xdc.useModule('ti.sysbios.ipc.Event');

var SyncEvent = xdc.useModule('ti.sysbios.syncs.SyncEvent');

var Generator = xdc.useModule('ti.sdo.io.drivers.Generator');

var DriverTable = xdc.useModule('ti.sdo.io.DriverTable');

Program.global.evt0 = Event.create();

/* create a Generator instance and add to DriverTable */

var driverHdl = Generator.create();

DriverTable.addMeta("/genDevice", driverHdl);

Run-time code: This C code uses Stream_issue() and Stream_reclaim() in a
Task using an Event:

#include <xdc/std.h>

#include <xdc/runtime/System.h>

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

#include <ti/sysbios/ipc/Event.h>

#include <ti/sysbios/sync/SyncEvent.h>

#include <ti/sdo/io/Stream.h>

#include <ti/sdo/io/drivers/Generator.h>

#define BUFSIZE 128

Int buf1[BUFSIZE];

Int buf2[BUFSIZE];

Ptr pbuf = &buf1;

Stream_Handle handleIn, handleOut;

extern Event_Handle evt0;
2-22

Streams
Void genSine(Ptr bufp, size_t nmaus, UArg arg);

Void myPrintf(Ptr bufp, size_t nmaus, UArg arg);

Void tsk0Fxn(UArg arg1, UArg arg2);

Generator_ChanParams genParamsIn = {genSine, NULL, FALSE};

Generator_ChanParams genParamsOut = {myPrintf, NULL, FALSE};

/* ======== main ======== */

Int main(Int argc, Char* argv[])

{

 SyncEvent_Params syncEvtParams;

 Stream_Params streamParams;

 SyncEvent_Params_init(&syncEvtParams);

 syncEvtParams.event = evt0;

 Stream_Params_init(&streamParams);

 streamParams.chanParams = (UArg)&genParamsIn;

 streamParams.sync =

 SyncEvent_Handle_upCast(SyncEvent_create(&syncEvtParams,

 NULL));

 handleIn = Stream_create("/genDevice", Stream_INPUT,

 &streamParams, NULL);

 streamParams.chanParams = (UArg)&genParamsOut;

 streamParams.sync =

 SyncEvent_Handle_upCast(SyncEvent_create(&syncEvtParams,

 NULL));

 handleOut = Stream_create("/genDevice", Stream_OUTPUT,

 &streamParams, NULL);

 Task_create(tsk0Fxn, NULL, NULL);

 Stream_issue(handleIn, &buf1, BUFSIZE, NULL, NULL);

 Stream_issue(handleOut, &buf2, BUFSIZE, NULL, NULL);

 BIOS_start();

 return(0);

}

The Input/Output Package 2-23

Streams
/* ======== tsk0Fxn ======== */

Void tsk0Fxn (UArg arg1, UArg arg2)

{

 Bits32 mask;

 mask = Event_pend(evt0, Event_Id_00 + Event_Id_01,

 Event_Id_NONE, BIOS_WAIT_FOREVER);

 System_printf("Awake after Event_pend, mask = %d \n", mask);

 Stream_reclaim(handleIn, &pbuf, BIOS_NO_WAIT, NULL, NULL);

 Stream_reclaim(handleOut, &pbuf, BIOS_NO_WAIT, NULL, NULL);

 BIOS_exit(0);

}

2.4.7 Using Streams with Generic Callbacks

It is possible for the application to provide two functions equivalent to
ISync_signal() and ISync_wait() using the xdc.runtime.knl.SyncGeneric
module.

One use case for this is when the application will use Stream with a simple
callback. The application then provides its callback function as the signal
function to SyncGeneric_create(). The Stream module then invokes the
application callback when IO completes. The application can reclaim the
buffer within the callback function.

2.4.8 Using Stream_read() and Stream_write()

Stream_read() and Stream_write() are simply wrappers on top of the
Stream_issue() and Stream_reclaim() APIs. While Stream_issue() and
Stream_reclaim() are used for both input and output streams, Stream_read()
is used only for input streams, and Stream_write() is used only for output
streams.

❏ Stream_read() is equivalent to a Stream_issue()/Stream_reclaim() pair
for an input channel.

❏ Stream_write() is equivalent to an Stream_issue()/Stream_reclaim() pair
for an output channel.
2-24

Streams
The Stream_read() API has the following parameters:

SizeT Stream_read(

 Stream_Handle handle,

 Ptr bufp,

 SizeT size,

 UInt timeout,

 Error_Block *eb);

The application calls Stream_read() with an empty buffer and a size. The size
of the buffer should be greater than or equal to the size requested. Upon
returning from Stream_read(), the application has a full buffer. Stream_read()
blocks until the buffer is filled or a timeout occurs.

Note: When a Stream is associated with an ISync_Handle that is non-
blocking, Stream_read() raises an error.

The Stream_write() API has the following parameters:

SizeT Stream_write(

 Stream_Handle handle,

 Ptr bufp,

 SizeT size,

 UInt timeout,

 Error_Block *eb);

The application calls Stream_write() with a full buffer and a size. The size of
the buffer should be greater than or equal to the size given. Upon returning
from Stream_write(), the application has a processed buffer. Stream_write()
blocks until a buffer is processed or a timeout occurs

Note: When a stream is associated with an ISync_Handle that is non-
blocking, Stream_read() raises an error.

2.4.9 Stream_abort() and Error Handling

Stream_abort() is only required if you are using Stream_issue() and
Stream_reclaim(). When several buffers have been issued to a Stream
instance, the application may want to cancel processing and get back all the
buffers. This could be the result of one of the following causes:

❏ The application has decided to cancel current IO and work on something
else.

❏ Stream_reclaim() returned an error.
The Input/Output Package 2-25

Streams
In such cases, the application needs to call Stream_abort() to force the driver
to return all buffers without processing them. After a call to Stream_abort(),
the application still needs to call Stream_reclaim() to get back the buffers.

Stream_reclaim() returns the buffers in the order that they were issued. The
size field returned by Stream_reclaim() is the size processed by the driver.

2.4.10 Constraints When Using Streams

❏ A Stream instance can be used only by a single Task.

❏ Stream_issue() and Stream_reclaim() can only be called by a single
thread (Task or Swi) or in the callback context.

❏ Stream_issue(), Stream_reclaim(), Stream_read(), and Stream_write()
cannot be called from Module startup. Some drivers may require that
these APIs not be called even from main() if they require hardware
interrupts to enable their peripherals.
2-26

The IDriver Interface
2.5 The IDriver Interface

The IDriver interface defines the driver interface for SYS/BIOS 6. If you are a
driver writer, read the following subsections before implementing a SYS/BIOS
6 driver. The IO modules in SYS/BIOS 6 will only talk to drivers that
implement this interface.

The IDriver interface defines four main functions that driver writers need to
implement:

❏ IDriver_open(). See Section 2.5.4.

❏ IDriver_close(). See Section 2.5.5.

❏ IDriver_submit(). See Section 2.5.6.

❏ IDriver_control(). See Section 2.5.7.

Drivers should also implement a create() function and a delete() function, but
the calling syntax for these functions is not specified in the IDriver interface
because the end-user application is responsible for calling these functions.
See Section 2.5.2 and Section 2.5.3.

The DriverTypes module is a supporting module that defines types used by
all drivers.

2.5.1 Using the Driver Template Generator

The ti.sdo.io.driverTemplate command line tool helps driver writers by
generating some starter files. You can invoke the driverTemplate tool as
follows:

xs ti.sdo.io.driverTemplate -m <DrvMod> -o <outputPath>

This tool generates DrvMod.xdc, DrvMod.xs and DrvMod.c files within a
package at <outputPath>. The template also generates a simple test for the
new driver. Driver writers can edit these files to meet their driver
requirements.

The generated package can be built using the xdc tools without any changes.
The Input/Output Package 2-27

The IDriver Interface
2.5.2 Driver create() Function

For a driver, the syntax of the create() call is not specified in the IDriver
interface. The driver owns its create() call and declares it in its own xdc file.
Applications need to call the driver-specific create() function directly. The
Stream module never calls a driver’s create() function directly.

Typically a driver instance equates to a peripheral (for example, uart0). A
driver may support several instances (for example, 3 uarts). Typically a driver
allows only a certain number of instances to be created.

A call to the driver's create() function does the following:

1) Mark the device inUse.

2) Initialize the instance object

3) Initialize peripheral registers

4) Register interrupts

Typically a driver instance object contains the a deviceId to map the instance
to a particular device and channel objects. For example:

struct Instance_State {

 UInt deviceId;

 ChanObj chans[NUMCHANS];

};

2.5.3 Driver delete() Function

A driver’s delete() function is directly called by the application. The syntax is
not specified in the IDriver interface. It should free all resources allocated and
acquired by the driver’s create() function.

2.5.4 IDriver_open() Function

The driver’s open() function is called by Stream_create().

For statically created Stream instances, the driver’s open() function is called
for all static Stream instances during Stream module startup. Because of this,
it is possible that the driver’s open() function will be called even before the
driver's module startup function. It is therefore necessary that the driver
handle this case and return a channel pointer even though the peripheral may
not be up and running. Eventually, when the driver's startup gets called, it
should raise an error if the peripheral could not be initialized correctly.
2-28

The IDriver Interface
The driver’s open() function is called using the following parameters:

Ptr IDriver_open(

 IDriver_Handle handle,

 String name,

 UInt mode,

 UArg chanParams,

 DriverTypes.DoneFxn cbFxn,

 UArg cbArg,

 Error.Block *eb);

The driver’s open() function can fail (for example, if the channel is in use).
When successful, The driver’s open() function returns an opaque channel
handle, usually a pointer to the channel object.

The driver handle passed to the driver’s open() function is read from the driver
table by Stream. It is the handle returned by calling the driver specific create
function.

The "name" parameter allows for driver-specific configuration—for example,
when a channel ID is required. The name will be NULL for most drivers. For
example, some drivers support many input and output channels per driver
instance. To specify a particular channel, the application would call
Stream_create() with a driver name like "rtdx5". The Stream module would
then get the driver handle for the rtdx entry in the driver table, and call the
driver’s open() function with name="5". The driver could parse this name to
get the channel ID.

Note: When the name passed to stream has no characters meant for the
driver, Stream will set the name to NULL. The driver could then check name
as follows: if (name == NULL)...

Most drivers will simply ignore the name.

The "mode" is either DriverTypes.INPUT or DriverTypes.OUTPUT.

The "chanParams" structure is driver specific. When chanParams is NULL,
the driver should use the default parameters that were statically configured.

The "cbFxn" function and "cbArg" are used to specify a callback function and
argument to indicate the completion of IO after an asynchronous submit call.

The driver should raise an error if open() fails, and the error block should
contain a driver-specific error or a generic error defined by DriverTypes.

The driver’s open() function should return a driver-specific opaque channel
handle.
The Input/Output Package 2-29

The IDriver Interface
Typically, a driver performs some or all of the following tasks in its open()
function:

❏ Mark that channel is in use.

❏ Initialize the channel object structure.

❏ Initialize the peripheral using chanParams.

❏ Enable interrupts for the channel.

The structure of the channel object is defined differently by each driver. The
following example shows a sample channel object structure:

struct ChanObj {

 Bool inUse; /* is channel is use? */

 UInt mode; /* input or output */

 List.Handle pendList; /* queue io packets */

 DriverTypes.DoneFxn callbackFxn; /* callback fxn */

 UArg callbackArg; /* callback arg *

};

While the structure may vary, some fields are necessary in nearly all drivers.
These important fields are:

❏ inUse. Allows the driver to allow only one open call per channel.

❏ mode. Must have a value of DriverTypes_INPUT, DriverTypes_OUTPUT,
or DriverTypes_INOUT.

❏ pendList. A mini-driver must be able to handle or hold multiple I/O
requests due to multiple calls to the driver’s submit() function by Stream.

❏ callbackFxn. The callback function pointer stores which function is
called as a result of a completed I/O request. This is typically the callback
function implemented as part of Stream.

❏ callbackArg. The callback argument is a pointer that is an input
parameter to the callback function.

2.5.5 IDriver_close() Function

The driver’s close() function is called by Stream_delete(). The driver typically
needs to perform some or all of the following actions in its close() function:

❏ Check to see if the channel can be closed.

❏ Release the channel.

❏ Disable interrupts for the channel.
2-30

The IDriver Interface
The driver’s close() function is called using the following syntax:

Void IDriver_close(

 IDriver_Handle handle,

 Ptr chanHandle,

 Error.Block *eb);

2.5.6 IDriver_submit() Function

Call to Stream_issue(), Stream_read() and Stream_write() result in a call to
the driver’s submit() function, which is used to submit jobs to the driver.

The driver’s submit() function is called using the following syntax:

UInt IDriver_submit(

 IDriver_Handle handle,

 Ptr chanHandle,

 DriverTypes.Packet *packet,

 Error.Block *eb);

The DriverTypes_Packet has the following fields:

typedef struct DriverTypes_Packet {

 List_Elem link;

 Ptr addr;

 SizeT origSize;

 SizeT size;

 UArg arg;

 DriverTypes_PacketCmd cmd;

 Error_Id error;

 UArg misc;

 Int status;

} DriverTypes_Packet;

❏ link. This field can be used by driver to queue up IO packets.

❏ addr. This field points to a buffer of data. The driver preserves this field.

❏ origSize. This is the size of data buffer. The driver preserves this field.

❏ size. This is actual size of data written or read. The driver updates this
field.

❏ arg. This is used by the end application. The driver preserves this field.

❏ cmd. This is the Packet command. The driver preserves this field.

❏ error. This is filled in by the mini-driver and contains status of IO.
The Input/Output Package 2-31

The IDriver Interface
It may be possible for the driver to complete the IO without the use of an
asynchronous interrupt. For example, if there is enough room in the
peripheral’s buffer, and/or depending on the polling mode used. In such cases
the driver’s submit() function should return the DriverTypes.COMPLETED
status.

DriverTypes.ERROR should be returned by the driver’s submit() function if
there is an error.

When the driver requires an asynchronous event, like an interrupt, to
complete the IO, the driver’s submit() function should return the
DriverTypes.PENDING status. In such cases, the asynchronous event results
in a callback. The callback function and callback function argument were
specified during the driver’s open() call.

If the driver encounters an error after returning DriverTypes_PENDING, the
driver should update the packet with the error ID and call the callback.

In the callback, Stream will check for errors in the IO packet. The error in the
packet could be driver-specific. In case of success, the Error.Id in the packet
should be NULL. The driver needs to update the size field to reflect the actual
size of processed data.

In all cases the driver is responsible for raising errors except in the case when
the driver’s submit() function returns DriverTypes.PENDING. In this case the
driver fills the Error.Id in the IO Packet.

The driver is expected to queue up IO packets for transfer if necessary and
must not produce an error when given more than one packet.

The driver is non-blocking—that is, it cannot call APIs that block as it is
expected that the higher layer will wait for IO to be completed and take action
in case of a timeout.

2.5.7 IDriver_control() Function

Stream_control() calls the driver’s control() function with driver-specific
control commands. The driver’s control() function is called using the following
syntax:

Void IDriver_control(

 IDriver_Handle handle,

 Ptr chanHandle,

 DriverTypes.ControlCmd cmd,

 UArg cmdArgs,

 Error.Block *eb);
2-32

The IDriver Interface
For example, the application could call Stream_control() to change channel-
specific parameters like the baud rate of a UART channel. The driver should
process the command and return values in the argument when necessary.

All drivers can define their own control commands in their spec files.

If the driver does not recognize the control command, it should raise an error.
It could use the generic DriverTypes_E_NOTIMPL error message.

A control command of DriverTypes.CHAN_ABORT is used to abort/discard
all packets queued up for a channel. This control command must be
supported by all drivers. Note that when the driver receives the abort control
command, it must abort ALL packets and call the callback for every packet. If
a packet is currently in progress, the driver must attempt to shut down DMA,
etc. and return the packet. Aborted packets need to be updated with the error
field set to DriverTypes.E_Aborted.

2.5.8 Driver ISRs

Many drivers have separate Tx and Rx interrupts. Typically the following
activities need to be performed in the ISR(s):

❏ Dequeue the IO packet.

❏ Set up the next transfer or service request.

❏ Call the class driver callback for the completed packet.
The Input/Output Package 2-33

The IConverter Interface
2.6 The IConverter Interface

The capabilities of the Stream module play an important role in fostering
device independence within SYS/BIOS in that logical devices insulate your
application programs from the details of designating a particular device. For
example, /dac is a logical device name that does not imply any particular DAC
hardware. The device-naming convention adds another dimension to device-
independent I/O that is unique to SYS/BIOS—the ability to use a single name
to denote a stack of devices.

By stacking certain data-scaling or message-passing modules atop one
another, you can create virtual I/O devices that further insulate your
applications from the underlying system hardware.

Consider, as an example, a program implementing an algorithm that inputs
and outputs a stream of fixed-point data using a pair of A/D-D/A converters.
However, the A/D-D/A device can take only the 14 most significant bits of
data, and the other two bits have to be 0 if you want to scale up the input data.
Instead of cluttering the program with excess code for data conversion and
buffering to satisfy the algorithm's needs, we can open a pair of virtual
devices that implicitly perform a series of transformations on the data
produced and consumed by the underlying real devices as shown.

The virtual input device, /scale2/a2d, actually comprises a stack of two
devices, each named according to the prefix of the device name specified in
your configuration file.

❏ /scale2 designates a device that transforms a fixed-point data stream
produced by an underlying device (/a2d) into a stream of scaled fixed-
point values.

❏ /a2d designates a device managed by the A/D-D/A device driver that
produces a stream of fixed-point input from an A/D converter.

The virtual output device, /mask2/d2a, likewise denotes a stack of two
devices.
2-34

The IConverter Interface
The following figure shows the flow of empty and full frames through these
virtual source and sink devices as the application program calls Stream
functions.

Stacking drivers do not implement the IDriver interface. Instead, they
implement a different interface called IConverter. Converters are not added
to the driver table. Instead, the Stream module maintains a table of
converters. Stream searches both the converter table and the driver table for
matches. However, note that names must be unique within all the items in
both tables. The Stream module searches the converter table first.

Here is an example script showing use of an IConverter module called
Transformer. This converter is provided with IPC in the ti.sdo.io.converters
package.

Configuration code: The following configuration file excerpt statically
creates a rtdxInst driver instance and a Transformer instance called transInst:

var Rtdx = xdc.useModule('ti.rtdx.driver.RtdxDrv');

var Transformer = xdc.useModule('ti.sdo.io.converters.Transformer');

var DriverTable = xdc.useModule('ti.sdo.io.DriverTable');

var Stream = xdc.useModule('ti.sdo.io.Stream');

Var rtdxInst = RtdxDrv.create();

DriverTable.addMeta("/in", rtdxInst);

var transParamsIn = new Transformer.Params();

transParamsIn.fxn = Transformer.multiply;

Var transInst = Transformer.create(transParamsIn);

Stream.addMeta("/scale", transInst);

Run-time code: This C code fragment creates the stacking driver instance:

handleIn = Stream_create("/scale/in", Stream_INPUT, NULL, NULL);

/scale2

/a2d

/mask2

/d2a

Application
Program

SI O_ge t ()
Source Device Sink Device

SI O_pu t ()Stream_write()Stream_read()
The Input/Output Package 2-35

The IomAdapter Module
2.7 The IomAdapter Module

The IomAdapter module allows legacy IOM drivers to work with SYS/BIOS 6.
This module translates the IDriver interface to the old IOM interface.

The IomAdapter module implements the IDriver interface. Each instance of
this module represents a legacy IOM driver module.

The following example uses the IomAdapter module with a legacy IOM driver:

Configuration code: The following configuration file excerpt statically
creates an IomAdapter instance and adds it to the DriverTable:

var iomPrms = new IomAdapter.Params();

iomPrms.iomFxns = $externPtr("UART_FXNS");

iomPrms.initFxn = "&UART_init";

iomPrms.deviceParams = $externPtr("UART_DEVPARAMS");

iomPrms.deviceId = 0;

iomInst = IomAdapter.create(iomPrms);

DriverTable.addMeta("/iomUart", iomInst);

Run-time code: This C code fragment creates two Stream instances that use
the legacy driver:

handleIn = Stream_create("/iomUart", Stream_INPUT, NULL, NULL);

handleOut = Stream_create("/iomUart", Stream_OUTPUT, NULL, NULL);

2.7.1 Mapping IOM Functions to IDriver Functions

This table lists the legacy IOM functions and their corresponding IDriver
functions:

IOM IDriver

mdBindDev Driver specific create()

mdUnbindDev Driver delete()

mdControlChan IDriver_control()

mdCreateChan IDriver_open()

mdDeleteChan IDriver_close()

mdSubmitChan IDriver_submit()
2-36

Porting the Stream Module to Another Operating System
2.8 Porting the Stream Module to Another Operating System

The Stream module is a RTSC module that uses the xdc.runtime package. It
is independent of SYS/BIOS. This makes it possible to port Stream to other
operating systems. Here are the steps required to use the Stream module
with other operating systems. These steps assume a TI target and TI build
tools.

1) Implement a module called GateInterrupt that inherits the IGate interface.
This Gate should disable interrupts when locked and restore interrupts
when unlocked. Plug the System gate with this module as follows:

 System.common$.gate = GateInterrupt.create();

2) Implement a module that inherits ITimestampProvider. SYS/BIOS
implements a target-specific TimestampProvider that can be identical for
another OS.

 Timestamp = xdc.module('xdc.runtime.Timestamp');

 var TimestampDelegate xdc.module ("TimestampProviderMod");

 Timestamp.SupportProxy = TimestampDelegate;

3) Implement one or several modules that implement the ISync interface.
Provide a good default for Stream that is equivalent to SyncSem.

 var Stream = xdc.module('ti.sdo.io.Stream');

 Stream.SyncProxy = xdc.useModule('SyncMod');

4) Implement the OS-specific backend of the xdc.runtime.knl package. For
example, implement ISemThreadSupport for the SemThread module in
xdc.runtime.knl.
The Input/Output Package 2-37

Porting the Stream Module to Another Operating System
2-38

Chapter 3

The Inter-Processor Communication
Package

This chapter introduces the modules in the ti.sdo.ipc package.

3.1 Modules in the IPC Package. 3–2

3.2 Ipc Module . 3–7

3.3 MessageQ Module . 3–11

3.4 ListMP Module . 3–26

3.5 Heap*MP Modules . 3–30

3.6 GateMP Module . 3–36

3.7 Notify Module. 3–41

3.8 SharedRegion Module. 3–43

Topic Page
3-1

Modules in the IPC Package
3.1 Modules in the IPC Package

The ti.sdo.ipc package contains the following modules that you may use
in your applications:

Additional modules in the subfolders of the ti.sdo.ipc package contain
specific implementations of gates, heaps, notify drivers, transports, and
various device family-specific modules.

Table 3-1. IPC package modules

Module Module Path

GateMP GateMP Manages gates for mutual exclusion of shared
resources by multiple processors and threads.
See Section 3.6.

HeapBufMP ti.sdo.ipc.heaps.
HeapBufMP

Fixed-sized shared memory Heaps. Similar to
SYS/BIOS’s ti.sysbios.heaps.HeapBuf module,
but with some configuration differences. See
Section 3.5.

HeapMemMP ti.sdo.ipc.heaps.
HeapMemMP

Variable-sized shared memory Heaps.
See Section 3.5.

HeapMultiBufMP ti.sdo.ipc.heaps.
HeapMultiBufMP

Multiple fixed-sized shared memory Heaps.
See Section 3.5.

Ipc ti.sdo.ipc.Ipc Provides Ipc_start() function and allows startup
sequence configuration. See Section 3.2.

ListMP ti.sdo.ipc.ListMP Doubly-linked list for shared-memory, multi-pro-
cessor applications. Very similar to the
ti.sdo.utils.List module. See Section 3.4.

MessageQ ti.sdo.ipc.MessageQ Variable size messaging module. See Section
3.3.

TransportShm ti.sdo.ipc.transports.
TransportShm

Transport used by MessageQ for remote com-
munication with other processors via shared
memory. See Section 3.3.11.

Notify ti.sdo.ipc.Notify Low-level interrupt mux/demuxer module. See
Section 3.7.

NotifyDriverShm ti.sdo.ipc.notifyDrivers.
NotifyDriverShm

Shared memory notification driver used by the
Notify module to communicate between a pair of
processors. See Section 3.7.

SharedRegion ti.sdo.ipc.SharedRegion Maintains shared memory for multiple shared
regions. See Section 3.8.
3-2

Modules in the IPC Package
In addition, the ti.sdo.ipc package defines the following interfaces that
you may implement as your own custom modules:

The <ipc_install_dir>/packages/ti/sdo/ipc directory contains the following
packages that you may need to know about:

❏ examples. Contains examples.

❏ family. Contains device-specific support modules (used internally).

❏ gates. Contains GateMP implementations (used internally).

❏ heaps. Contains multiprocessor heaps.

❏ interfaces. Contains interfaces.

❏ notifyDrivers. Contains NotifyDriver implementations (used
internally).

❏ transports. Contains MessageQ transport implementations that are
used internally.

Table 3-2. IPC package modules

Module Module Path

IGateMPSupport ti.sdo.ipc.interfaces.IGateMPSupport

IInterrupt ti.sdo.ipc.notifyDrivers.IInterrupt

IMessageQTransport ti.sdo.ipc.interfaces.IMessageQTransport

INotifyDriver ti.sdo.ipc.interfaces.INotifyDriver

INotifySetup ti.sdo.ipc.interfaces.INotifySetup
The Inter-Processor Communication Package 3-3

Modules in the IPC Package
3.1.1 Including Header Files

Applications that use modules in the ti.sdo.ipc or ti.sdo.utils package
should include the common header files provided in
<ipc_install_dir>/packages/ti/ipc/. These header files are designed to
offer a common API for both SYS/BIOS and Linux users of IPC.

The following example C code includes header files applications may
need to use. Depending on the APIs used in your application code, you
may need to include different XDC, IPC, and SYS/BIOS header files.

#include <xdc/std.h>

#include <string.h>

/* ---- XDC.RUNTIME module Headers */

#include <xdc/runtime/Memory.h>

#include <xdc/runtime/System.h>

#include <xdc/runtime/IHeap.h>

/* ----- IPC module Headers */

#include <ti/ipc/GateMP.h>

#include <ti/ipc/Ipc.h>

#include <ti/ipc/MessageQ.h>

#include <ti/ipc/HeapBufMP.h>

#include <ti/ipc/MultiProc.h>

/* ---- BIOS6 module Headers */

#include <ti/sysbios/BIOS.h>

#include <ti/sysbios/knl/Task.h>

/* ---- Get globals from .cfg Header */

#include <xdc/cfg/global.h>

Note that the appropriate include file location has changed from previous
versions of IPC. The RTSC-generated header files are still available in
<ipc_install_dir>/packages/ti/sdo/ipc/, but these should not directly be
included in runtime .c code.

You should search your applications for "ti/sdo/ipc" and "ti/sdo/utils" and
change the header file references found as needed. Additional changes
to API calls will be needed.

Documentation for all common-header APIs is provided in Doxygen
format at <ipc_install_dir>/docs/doxygen/html/index.html.
3-4

Modules in the IPC Package
3.1.2 Standard IPC Function Call Sequence

For instance-based modules in IPC, the standard IPC methodology when
creating object dynamically (that is, in C code) is to have the creator
thread first initialize a MODULE_Params structure to its default values via
a MODULE_Params_init() function. The creator thread can then set
individual parameter fields in this structure as needed. After setting up the
MODULE_Params structure, the creator thread calls the
MODULE_create() function to creates the instance and initializes any
shared memory used by the instance. If the instance is to be opened
remotely, a unique name must be supplied in the parameters.

Other threads can access this instance via the MODULE_open()
function, which returns a handle with access to the instance. The name
that was used for instance creation must be used in the MODULE_open()
function.

In most cases, MODULE_open() functions must be called in the context
of a Task. This is because the thread running the MODULE_open()
function needs to be able to block (to pend on a Semaphore in this case)
while waiting for the remote processor to respond. The response from the
remote processor triggers a hardware interrupt, which then posts a
Semaphore to allow to Task to resume execution. The exception to this
rule is that MODULE_open() functions do not need to be able to block
when opening an instance on the local processor.

When the threads have finished using an instance, all threads that called
MODULE_open() must call MODULE_close(). Then, the thread that
called MODULE_create() can call MODULE_delete() to free the memory
used by the instance.

Note that all threads that opened an instance must close that instance
before the thread that created it can delete it. Also, a thread that calls
MODULE_create() cannot call MODULE_close(). Likewise, a thread that
calls MODULE_open() cannot call MODULE_delete().
The Inter-Processor Communication Package 3-5

Modules in the IPC Package
3.1.3 Error Handling in IPC

Many of the APIs provided by IPC return an integer as a status code.
Your application can test the status value returned against any of the
provided status constants. For example:

MessageQ_Msg msg;

MessageQ_Handle messageQ;

Int status;

...

status = MessageQ_get(messageQ, &msg, MessageQ_FOREVER);

 if (status < 0) {

 System_abort("Should not happen\n");

 }

Status constants have the following format: MODULE_[S|E]_CONDITION.
For example, Ipc_S_SUCCESS, MessageQ_E_FAIL, and
SharedRegion_E_MEMORY are status codes that may be returned by
functions in the corresponding modules.

Success codes always have values greater or equal to zero. For
example, Ipc_S_SUCCESS=0 and Ipc_S_ALREADYSETUP=1; both are
success codes. Failure codes always have values less than zero.
Therefore, the presence of an error can be detected by simply checking
whether the return value is negative.

Other APIs provided by IPC return a handle to a created object. If the
handle is NULL, an error occurred when creating the object. For example:

messageQ = MessageQ_create(DSP_MESSAGEQNAME, NULL);

if (messageQ == NULL) {

 System_abort("MessageQ_create failed\n");

}

Refer to the Doxygen documentation for status codes returned by IPC
functions.
3-6

Ipc Module
3.2 Ipc Module

Note: The Ipc module is not used on Concerto F28M35x devices. Instead,
the IpcMgr module (in the ti.sdo.ipc.family.f28m35x package) is used to
configure the devices as described in Section B.2. Concerto applications
should not call any Ipc or IpcMgr APIs at runtime.

The main purpose of the Ipc module is to initialize the various
subsystems of IPC. All applications that use IPC modules must call the
Ipc_start() API, which does the following:

❏ Initializes a number of objects and modules used by IPC

❏ Synchronizes multiple processors so they can boot in any order

An application that uses IPC APIs—such as MessageQ, GateMP, and
ListMP—must include the Ipc module header file and call Ipc_start() in
the main() function. If the main() function calls any IPC APIs, the call to
Ipc_start() must be placed before any calls to IPC modules. For example:

#include <ti/ipc/Ipc.h>

...

Int main(Int argc, Char* argv[])

{

 Int status;

 /* Call Ipc_start() */

 status = Ipc_start();

 if (status < 0) {

 System_abort("Ipc_start failed\n");

 }

 BIOS_start();

 return (0);

}

By default, Ipc_start() internally calls Notify_start() if it has not already
been called. Ipc_start() then loops through the defined SharedRegions
so that it can set up the HeapMemMP and GateMP instances used
internally by the IPC modules. It also sets up MessageQ transports to
remote processors.

The SharedRegion with an index of 0 (zero) is used by IPC_start() to
create resource management tables for internal use by other IPC
modules. Thus SharedRegion "0" must be accessible by all processors.
See Section 3.8 for more about the SharedRegion module.
The Inter-Processor Communication Package 3-7

Ipc Module
3.2.1 Ipc Module Configuration

In a RTSC configuration file, you configure the Ipc module for use as
follows:

Ipc = xdc.useModule('ti.sdo.ipc.Ipc');

You can configure what the Ipc_start() API will do—which modules it will
start and which objects it will create—by using the Ipc.setEntryMeta
method in the configuration file to set the following properties:

❏ setupNotify. If set to false, the Notify module is not set up. The
default is true.

❏ setupMessageQ. If set to false, the MessageQ transport instances
to remote processors are not set up and the MessageQ module does
not attach to remote processors. The default is true.

For example, the following statements from the notify example
configuration turn off the setup of the MessageQ transports and
connections to remote processors:

/* To avoid wasting shared memory for MessageQ transports */

for (var i = 0; i < MultiProc.numProcessors; i++) {

 Ipc.setEntryMeta({

 remoteProcId: i,

 setupMessageQ: false,

 });

}

You can configure how the IPC module synchronizes processors by
configuring the Ipc.procSync property. For example:

Ipc.procSync = Ipc.ProcSync_ALL;

The options are:

❏ Ipc.ProcSync_ALL. If you use this option, the Ipc_start() API
automatically attaches to and synchronizes all remote processors. If
you use this option, your application should never call Ipc_attach().
Use this option if all IPC processors on a device start up at the same
time and connections should be established between every possible
pair of processors.

❏ Ipc.ProcSync_PAIR. (Default) If you use this option, you must
explicitly call Ipc_attach() to attach to a specific remote processor. If
you use this option, Ipc_start() performs system-wide IPC
initialization, but does not make connections to remote processors.
Use this option if any or all of the following are true:
3-8

Ipc Module
■ You need to control when synchronization with each remote
processor occurs.

■ Useful work can be done while trying to synchronize with a
remote processor by yielding a thread after each attempt to
Ipc_attach() to the processor.

■ Connections to some remote processors are unnecessary and
should be made selectively to save memory.

❏ Ipc.ProcSync_NONE. If you use this option, Ipc_start() doesn’t
synchronize any processors before setting up the objects needed by
other modules. Use this option with caution. It is intended for use in
cases where the application performs its own synchronization and
you want to avoid a potential deadlock situation with the IPC
synchronization.

If you use the ProcSync_NONE option, Ipc_start() works exactly as
it does with ProcSync_PAIR.

However, in this case, Ipc_attach() does not synchronize with the
remote processor. As with other ProcSync options, Ipc_attach() still
sets up access to GateMP, SharedRegion, Notify, NameServer, and
MessageQ transports, so your application must still call Ipc_attach()
for each remote processor that will be accessed. Note that an
Ipc_attach() call for a remote processor whose ID is less than the
local processor’s ID must occur after the corresponding remote
processor has called Ipc_attach() to the local processor. For
example, processor #2 can call Ipc_attach(1) only after processor #1
has called Ipc_attach(2).

You can configure a function to perform custom actions in addition to the
default actions performed when attaching to or detaching from a remote
processor. These functions run near the end of Ipc_attach() and near the
beginning of Ipc_detach(), respectively (see Section 3.2.2). Such
functions must be non-blocking and must run to completion. The
following example configures two attach functions and two detach
functions. Each set of functions will be passed a different argument:

var Ipc = xdc.useModule('ti.sdo.ipc.Ipc');

var fxn = new Ipc.UserFxn;

fxn.attach = '&userAttachFxn1';

fxn.detach = '&userDetachFxn1';

Ipc.addUserFxn(fxn, 0x1);

fxn.attach = '&userAttachFxn2';

fxn.detach = '&userDetachFxn2';

Ipc.addUserFxn(fxn, 0x2);
The Inter-Processor Communication Package 3-9

Ipc Module
3.2.2 Ipc Module APIs

In addition to the Ipc_start() API, which all applications that use IPC
modules are required to call, the Ipc module also provides the following
APIs for processor synchronization:

❏ Ipc_attach() Creates a connection to the specified remote
processor.

❏ Ipc_detach() Deletes the connection to the specified remote
processor.

You must call Ipc_start() on a processor before calling Ipc_attach().

Note: Call Ipc_attach() to the processor that owns shared memory region
0 (usually the processor with id = 0) before making a connection to any
other remote processor. For example, if there are three processors
configured with MultiProc, #1 should attach to #0 before it can attach to #2.

Use these functions unless you are using the Ipc.ProcSync_ALL
configuration setting. With that option, Ipc_start() automatically attaches
to and synchronizes all remote processors, and your application should
never call Ipc_attach().

The Ipc.ProcSync_PAIR configuration option expects that your
application will call Ipc_attach() for each remote processor with which it
should be able to communicate.

Processor synchronization means that one processor waits until the
other processor signals that a particular module is ready for use. Within
Ipc_attach(), this is done for the GateMP, SharedRegion (region 0), and
Notify modules and the MessageQ transports.

You can call the Ipc_detach() API to delete internal instances created by
Ipc_attach() and to free the memory used by these instances.
3-10

MessageQ Module
3.3 MessageQ Module

The MessageQ module supports the structured sending and receiving of
variable length messages. It is OS independent and works with any
threading model. For each MessageQ you create, there is a single reader
and may be multiple writers.

Note: MessageQ use is the same with Concerto F28M35x devices as for
other devices. See Section 6.3.2 for information about the TransportCirc
driver used with the MessageQ module when you are using Concerto
devices.

MessageQ is the recommended messaging API for most applications. It
can be used for both homogeneous and heterogeneous multi-processor
messaging, along with single-processor messaging between threads.

With the additional setup now performed automatically by Ipc_start()—
the creation of transports, initialization of shared memory, and more—
configuration of objects used by MessageQ is much easier than in
previous versions of IPC.

(The MessageQ module in IPC is similar in functionality to the MSGQ
module in DSP/BIOS 5.x.)

The following are key features of the MessageQ module:

❏ Writers and readers can be relocated to another processor with no
runtime code changes.

❏ Timeouts are allowed when receiving messages.

❏ Readers can determine the writer and reply back.

❏ Receiving a message is deterministic when the timeout is zero.

❏ Messages can reside on any message queue.

❏ Supports zero-copy transfers.

❏ Messages can be sent and received from any type of thread.

❏ The notification mechanism is specified by the application.

❏ Allows QoS (quality of service) on message buffer pools. For
example, using specific buffer pools for specific message queues.

Messages are sent and received via a message queue. A reader is a
thread that gets (reads) messages from a message queue. A writer is a
thread that puts (writes) a message to a message queue. Each message
queue has one reader and can have many writers. A thread may read
from or write to multiple message queues.
The Inter-Processor Communication Package 3-11

MessageQ Module
❏ Reader. The single reader thread calls MessageQ_create(),
MessageQ_get(), MessageQ_free(), and MessageQ_delete().

❏ Writer. Writer threads call MessageQ_open(), MessageQ_alloc(),
MessageQ_put(), and MessageQ_close().

The following figure shows the flow in which applications typically use the
main runtime MessageQ APIs:

Conceptually, the reader thread owns a message queue. The reader
thread creates a message queue. Writer threads then open a created
message queue to get access to them.

3.3.1 Configuring the MessageQ Module

You can configure a number of module-wide properties for MessageQ in
your RTSC configuration file. If you are configuring the MessageQ
module, you must enable the module as follows:

var MessageQ = xdc.useModule('ti.sdo.ipc.MessageQ');

MessageQ_create
MessageQ_open

MessageQ_alloc

MessageQ_get
MessageQ_put

MessageQ_delete
MessageQ_close MessageQ_free

MessageQ_create
MessageQ_open

MessageQ_alloc

MessageQ_get
MessageQ_put

MessageQ_delete
MessageQ_close MessageQ_free
3-12

MessageQ Module
Module-wide configuration properties you can set are as follows. The
default values are shown in the following statements. See the IPC online
documentation for details.

// Maximum length of MessageQ names

MessageQ.maxNameLen = 32;

// Max number of MessageQs that can be dynamically created

MessageQ.maxRuntimeEntries = 10;

// Number of heapIds in the system

MessageQ.numHeaps = 0;

// Section name used to place the names table

MessageQ.tableSection = null;

3.3.2 Creating a MessageQ Object

You can create message queues dynamically. Static creation is not
supported. A MessageQ object is not a shared resource. That is, it
resides on the processor that creates it.

The reader thread creates a message queue. To create a MessageQ
object dynamically, use the MessageQ_create() C API, which has the
following syntax:

MessageQ_Handle MessageQ_create(String name,

 MessageQ_Params *params);

When you create a queue, you specify a name string. This name will be
needed by the MessageQ_open() function, which is called by threads on
the same or remote processors that want to send messages to the
created message queue. While the name is not required (that is, it can be
NULL), an unnamed queue cannot be opened.

An ISync handle is associated with the message queue via the
synchronizer parameter (see Section 3.3.9 for details).

If the call is successful, the MessageQ_Handle is returned. If the call fails,
NULL is returned.

You initialize the params struct by using the MessageQ_Params_init()
function, which initializes the params structure with the default values. A
NULL value for params can be passed into the create call, which results
in the defaults being used. However, the default synchronizer is NULL.
The Inter-Processor Communication Package 3-13

MessageQ Module
The following code creates a MessageQ object using SyncSem as the
synchronizer.

MessageQ_Handle messageQ;

MessageQ_Params messageQParams;

SyncSem_Handle syncSemHandle;

...

syncSemHandle = SyncSem_create(NULL, NULL);

MessageQ_Params_init(&messageQParams);

messageQParams.synchronizer =

 SyncSem_Handle_upCast(syncSemHandle);

messageQ = MessageQ_create(CORE0_MESSAGEQNAME,

 &messageQParams);

In this example, the CORE0_MESSAGEQNAME constant is defined in the
message_common.cfg.xs configuration file.

3.3.3 Opening a Message Queue

Writer threads open a created message queue to get access to them. In
order to obtain a handle to a message queue that has been created, a
writer thread must call MessageQ_open(), which has the following
syntax.

Int MessageQ_open(String name,

 MessageQ_QueueId *queueId);

This function expects a name, which must match with the name of the
created object. Internally MessageQ calls NameServer_get() to find the
32-bit queueId associated with the created message queue. NameServer
looks both locally and remotely.

If no matching name is found on any processor, MessageQ_open()
returns MessageQ_E_NOTFOUND. If the open is successful, the Queue
ID is filled in and MessageQ_S_SUCCESS is returned.
3-14

MessageQ Module
The following code opens the MessageQ object created by the
processor.

MessageQ_QueueId remoteQueueId;

Int status;

...

/* Open the remote message queue. Spin until it is ready. */

do {

 status = MessageQ_open(CORE0_MESSAGEQNAME,

 &remoteQueueId);

}

while (status < 0);

3.3.4 Allocating a Message

MessageQ manages message allocation via the MessageQ_alloc() and
MessageQ_free() functions. MessageQ uses Heaps for message
allocation. MessageQ_alloc() has the following syntax:

MessageQ_Msg MessageQ_alloc(UInt16 heapId,

 UInt32 size);

The allocation size in MessageQ_alloc() must include the size of the
message header, which is 32 bytes.

The following code allocates a message:

#define MSGSIZE 256

#define HEAPID 0

...

MessageQ_Msg msg;

...

msg = MessageQ_alloc(HEAPID, sizeof(MessageQ_MsgHeader));

if (msg == NULL) {

 System_abort("MessageQ_alloc failed\n");

}

Once a message is allocated, it can be sent on any message queue.
Once the reader receives the message, it may either free the message
or re-use the message.
The Inter-Processor Communication Package 3-15

MessageQ Module
Messages in a message queue can be of variable length. The only
requirement is that the first field in the definition of a message must be a
MsgHeader structure. For example:

typedef struct MyMsg {

 MessageQ_MsgHeader header; // Required

 SomeEnumType type // Can be any field

 ... // ...

} MyMsg;

The MessageQ APIs use the MessageQ_MsgHeader internally. Your
application should not modify or directly access the fields in the
MessageQ_MsgHeader structure.

3.3.4.1 MessageQ Allocation and Heaps

All messages sent via the MessageQ module must be allocated from a
xdc.runtime.IHeap implementation, such as
ti.sdo.ipc.heaps.HeapBufMP. The same heap can also be used for other
memory allocation not related to MessageQ.

The MessageQ_registerHeap() API assigns a MessageQ heapId to a
heap. When allocating a message, the heapId is used, not the heap
handle. The heapIds should start at zero and increase. The maximum
number of heaps is determined by the numHeap module configuration
property. See the online documentation for MessageQ_registerHeap()
for details.

/* Register this heap with MessageQ */

status = MessageQ_registerHeap(
 HeapBufMP_Handle_upCast(heapHandle), HEAPID);

If the registration fails (for example, the heapId is already used), this
function returns FALSE.

An application can use multiple heaps to allow an application to regulate
its message usage. For example, an application can allocate critical
messages from a heap of fast on-chip memory and non-critical messages
from a heap of slower external memory. Additionally, heaps MessageQ
uses can be shared with other modules and/or the application.

MessageQ alternatively supports allocating messages without the
MessageQ_alloc() function. See Section 3.3.4.2, MessageQ Allocation
Without a Heap for more information.

Heaps can be unregistered via MessageQ_unregisterHeap().
3-16

MessageQ Module
3.3.4.2 MessageQ Allocation Without a Heap

It is possible to send MessageQ messages that are allocated statically
instead of being allocated at run-time via MessageQ_alloc(). However
the first field of the message must still be a MsgHeader. To make sure
the MsgHeader has valid settings, the application must call
MessageQ_staticMsgInit(). This function initializes the header fields in
the same way that MessageQ_alloc() does, except that it sets the heapId
field in the header to the MessageQ_STATICMSG constant.

If an application uses messages that were not allocated using
MessageQ_alloc(), it cannot free the messages via the MessageQ_free()
function, even if the message is received by a different processor. Also,
the transport may internally call MessageQ_free() and encounter an
error.

If MessageQ_free() is called on a statically allocated message, it asserts
that the heapId of the message is not MessageQ_STATICMSG.

3.3.5 Sending a Message

Once a message queue is opened and a message is allocated, the
message can be sent to the MessageQ via the MessageQ_put() function,
which has the following syntax.

Int MessageQ_put(MessageQ_QueueId queueId,

 MessageQ_Msg msg);

For example:

status = MessageQ_put(remoteQueueId, msg);
The Inter-Processor Communication Package 3-17

MessageQ Module
Opening a queue is not required. Instead the message queue ID can be
"discovered" via the MessageQ_getReplyQueue() function (see Section
3.3.10 for more information), which returns the 32-bit queueId.

MessageQ_QueueId replyQueue;

MessageQ_Msg msg;

/* Use the embedded reply destination */

replyMessageQ = MessageQ_getReplyQueue(msg);

if (replyMessageQ == MessageQ_INVALIDMESSAGEQ) {

 System_abort("Invalid reply queue\n");

}

/* Send the response back */

status = MessageQ_put(replyQueue, msg);

 if (status < 0) {

 System_abort("MessageQ_put was not successful\n");

 }

If the destination queue is local, the message is placed on the appropriate
priority linked list and the ISync signal function is called. If the destination
queue is on a remote processor, the message is given to the proper
transport and returns. See Section 3.3.11 for more information.

If MessageQ_put() succeeds, it returns MessageQ_S_SUCCESS. If
MessageQ_E_FAIL is returned, an error occurred and the caller still
owns the message.

There can be multiple senders to a single message queue. MessageQ
handles the thread safety.

Before you send a message, you can use the MessageQ_setMsgId()
function to assign a numeric value to the message that can be checked
by the receiving thread.

/* Increment...the remote side will check this */

msgId++;

MessageQ_setMsgId(msg, msgId);

You can use the MessageQ_setMsgPri() function to set the priority of the
message. See Section 3.3.8 for more about message priorities.
3-18

MessageQ Module
3.3.6 Receiving a Message

To receive a message, a reader thread calls the MessageQ_get() API.

Int MessageQ_get(MessageQ_Handle handle,

 MessageQ_Msg *msg,

 UInt timeout)

If a message is present, it returned by this function. In this case the
ISync's wait() function is not called.

For example:

/* Get a message */
status = MessageQ_get(messageQ, &msg, MessageQ_FOREVER);

if (status < 0) {

 System_abort("Should not happen; timeout is forever\n");

}

If no message is present and no error occurs, this function blocks while
waiting for the timeout period for the message to arrive. If the timeout
period expires, MessageQ_E_FAIL is returned. If an error occurs, the
msg argument will be unchanged.

After receiving a message, you can use the following APIs to get
information about the message from the message header:

❏ MessageQ_getMsgId() gets the ID value set by
MessageQ_setMsgId(). For example:

 /* Get the id and increment it to send back */

 msgId = MessageQ_getMsgId(msg);

 msgId += NUMCLIENTS;

 MessageQ_setMsgId(msg, msgId);

❏ MessageQ_getMsgPri() gets the priority set by
MessageQ_setMsgPri(). See Section 3.3.8.

❏ MessageQ_getMsgSize() gets the size of the message in bytes.

❏ MessageQ_getReplyQueue() gets the ID of the queue provided by
MessageQ_setReplyQueue(). See Section 3.3.10.
The Inter-Processor Communication Package 3-19

MessageQ Module
3.3.7 Deleting a MessageQ Object

MessageQ_delete() frees a MessageQ object stored in local memory. If
any messages are still on the internal linked lists, they will be freed. The
contents of the handle are nulled out by the function to prevent use after
deleting.

Void MessageQ_delete(MessageQ_Handle *handle);

The queue array entry is set to NULL to allow re-use.

Once a message queue is deleted, no messages should be sent to it. A
MessageQ_close() is recommended, but not required.

3.3.8 Message Priorities

MessageQ supports three message priorities as follows:

❏ MessageQ_NORMALPRI = 0

❏ MessageQ_HIGHPRI = 1

❏ MessageQ_URGENTPRI = 3

You can set the priority level for a message before sending it by using the
MessageQ_setMsgPri function:

Void MessageQ_setMsgPri(MessageQ_Msg msg,

 MessageQ_Priority priority)

Internally a MessageQ object maintains two linked lists: normal and high-
priority. A normal priority message is placed onto the "normal" linked list
in FIFO manner. A high priority message is placed onto the "high-priority"
linked list in FIFO manner. An urgent message is placed at the beginning
of the high linked list.

Note: Since multiple urgent messages may be sent before a message is
read, the order of urgent messages is not guaranteed.

When getting a message, the reader checks the high priority linked list
first. If a message is present on that list, it is returned. If not, the normal
priority linked list is checked. If a message is present there, it is returned.
Otherwise the synchronizer’s wait function is called.

See Section 3.3.11, Remote Communication via Transports for
information about the handling of priority by transports.
3-20

MessageQ Module
3.3.9 Thread Synchronization

MessageQ supports reads and writes of different thread models. It can
work with threading models that include SYS/BIOS’s Hwi, Swi, and Task
threads.

This flexibility is accomplished by using an implementation of the
xdc.runtime.knl.ISync interface. The creator of the message queue must
also create an object of the desired ISync implementation and assign that
object as the "synchronizer" of the MessageQ. Each message queue has
its own synchronizer object.

An ISync object has two main functions: signal() and wait(). Whenever
MessageQ_put() is called, the signal() function of the ISync
implementation is called. If MessageQ_get() is called when there are no
messages on the queue, the wait() function of the ISync implementation
is called. The timeout passed into the MessageQ_get() is directly passed
to the ISync wait() API.

Important: Since ISync implementations must be binary, the reader thread
must drain the MessageQ of all messages before waiting for another signal.

For example, if the reader is a SYS/BIOS Swi, the instance could be a
SyncSwi. When a MessageQ_put() is called, the Swi_post() API would
be called. The Swi would run and it must call MessageQ_get() until no
messages are returned. If the Swi does not get all the messages, the Swi
will not run again, or at least will not run until a new message is placed
on the queue.

The calls to ISync functions occurs directly in MessageQ_put() when the
call occurs on the same processor where the queue was created. In the
remote case, the transport calls MessageQ_put(), which is then a local
put, and the signal function is called. (See Section 3.3.11.)

The following are ISync implementations provided by XDCtools and
SYS/BIOS:

❏ xdc.runtime.knl.SyncNull. The signal() and wait() functions do
nothing. Basically this implementation allows for polling.

❏ xdc.runtime.knl.SyncSemThread. An implementation built using
the xdc.runtime.knl.Semaphore module, which is a binary
semaphore.

❏ xdc.runtime.knl.SyncGeneric.xdc. This implementation allows you
to use custom signal() and wait() functions as needed.
The Inter-Processor Communication Package 3-21

MessageQ Module
❏ ti.sysbios.syncs.SyncSem. An implementation built using the
ti.sysbios.ipc.Semaphore module. The signal() function runs a
Semaphore_post(). The wait() function runs a Semaphore_pend().

❏ ti.sysbios.syncs.SyncSwi. An implementation built using the
ti.sysbios.knl.Swi module. The signal() function runs a Swi_post().
The wait() function does nothing and returns FALSE if the timeout
elapses.

❏ ti.sysbios.syncs.SyncEvent. An implementation built using the
ti.sysbios.ipc.Event module. The signal() function runs an
Event_post(). The wait() function does nothing and returns FALSE if
the timeout elapses. This implementation allows waiting on multiple
events.

The following code from the "message" example creates a SyncSem
instance and assigns it to the synchronizer field in the
MessageQ_Params structure before creating the MessageQ instance:

#include <ti/sysbios/syncs/SyncSem.h>

...

MessageQ_Params messageQParams;

SyncSem_Handle syncSemHandle;

/* Create a message queue using SyncSem as synchronizer */

syncSemHandle = SyncSem_create(NULL, NULL);

MessageQ_Params_init(&messageQParams);

messageQParams.synchronizer =

 SyncSem_Handle_upCast(syncSemHandle);

messageQ = MessageQ_create(CORE1_MESSAGEQNAME,

 &messageQParams, NULL);

3.3.10 ReplyQueue

For some applications, doing a MessageQ_open() on a queue is not
realistic. For example, a server may not want to open all the clients'
queues for sending responses. To support this use case, the message
sender can embed a reply queueId in the message using the
MessageQ_setReplyQueue() function.

Void MessageQ_setReplyQueue(MessageQ_Handle handle,

 MessageQ_Msg msg)

This API stores the message queue's queueId into fields in the
MsgHeader.
3-22

MessageQ Module
The MessageQ_getReplyQueue() function does the reverse. For
example:

MessageQ_QueueId replyQueue;

MessageQ_Msg msg;

...

/* Use the embedded reply destination */

replyMessageQ = MessageQ_getReplyQueue(msg);

if (replyMessageQ == MessageQ_INVALIDMESSAGEQ) {

 System_abort("Invalid reply queue\n");

}

The MessageQ_QueueId value returned by this function can then be
used in a MessageQ_put() call.

The queue that is embedded in the message does not have to be the
sender's queue.

3.3.11 Remote Communication via Transports

MessageQ is designed to support multiple processors. To allow this,
different transports can be plugged into MessageQ.

In a multi-processor system, MessageQ communicates with other
processors via ti.sdo.ipc.interfaces.IMessageQTransport instances.
There can be up to two IMessageQTransport instances for each
processor to which communication is desired. One can be a normal-
priority transport and the other for handling high-priority messages. This
is done via the priority parameter in the transport create() function. If
there is only one register to a remote processor (either normal or high),
all messages go via that transport.

There can be different transports on a processor. For example, there may
be a shared memory transport to processor A and an sRIO one to
processor B.

When your application calls Ipc_start(), the default transport instance
used by MessageQ is created automatically. Internally, transport
instances are responsible for registering themselves with MessageQ via
the MessageQ_registerTransport() function.

IPC provides an implementation of the IMessageQTransport interface
called ti.sdo.ipc.transports.TransportShm (shared memory). You can
write other implementations to meet your needs.
The Inter-Processor Communication Package 3-23

MessageQ Module
When a transport is created via a transport-specific create() call, a remote
processor ID (defined via the MultiProc module) is specified. This ID
denotes which processor this instance communicates with. Additionally
there are configuration properties for the transport—such as the
message priority handled—that can be defined in a Params structure.
The transport takes these pieces of information and registers itself with
MessageQ. MessageQ now knows which transport to call when sending
a message to a remote processor.

Trying to send to a processor that has no transport results in an error.

3.3.11.1 Custom Transport Implementations

Transports can register and unregister themselves dynamically. That is,
if the transport instance is deleted, it should unregister with MessageQ.

When receiving a message, transports need to form the
MessageQ_QueueId that allows them to call MessageQ_put(). This is
accomplished via the MessageQ_getDstQueue() API.

MessageQ_QueueId MessageQ_getDstQueue(MessageQ_Msg msg)
3-24

MessageQ Module
3.3.12 Sample Runtime Program Flow (Dynamic)

The following figure shows the typical sequence of events when using a
MessageQ. A message queue is created by a Task. An open on the same
processor then occurs. Assume there is one message in the system. The
opener allocates the message and sends it to the created message
queue, which gets and frees it.

Free buffer
 Allocated buffer

Task blocked
Task ready
Task running
Task idle

MessageQ
MessageQ
Creator

MessageQ
Opener

create
open

Failed queue not created
MessageQ Handle

put

open
MessageQ Handle

alloc

get (blocks in ISync wait)

ISync signal
get (returns)

free
The Inter-Processor Communication Package 3-25

ListMP Module
3.4 ListMP Module

The ti.sdo.ipc.ListMP module is a linked-list based module designed to
be used in a multi-processor environment. It is designed to provide a
means of communication between different processors.

Note: The ListMP module is not supported for Concerto F28M35x devices.

ListMP uses shared memory to provide a way for multiple processors to
share, pass, or store data buffers, messages, or state information. ListMP
is a low-level module used by several other IPC modules, including
MessageQ, HeapBufMP, and transports, as a building block for their
instance and state structures.

A common challenge that occurs in a multi-processor environment is
preventing concurrent data access in shared memory between different
processors. ListMP uses a multi-processor gate to prevent multiple
processors from simultaneously accessing the same linked-list. All
ListMP operations are atomic across processors.

You create a ListMP instance dynamically as follows:

1) Initialize a ListMP_Params structure by calling
ListMP_Params_init().

2) Specify the name, regionId, and other parameters in the
ListMP_Params structure.

3) Call ListMP_create().

ListMP uses a ti.sdo.utils.NameServer instance to store the instance
information. The ListMP name supplied must be unique for all ListMP
instances in the system.

ListMP_Params params;

GateMP_Handle gateHandle;

ListMP_Handle handle1;

/* If gateHandle is NULL, the default remote gate will be

 automatically chosen by ListMP */

gateHandle = GateMP_getDefaultRemote();

ListMP_Params_init(¶ms);

params.gate = gateHandle;

params.name = "myListMP";

params.regionId = 1;

handle1 = ListMP_create(¶ms, NULL);
3-26

ListMP Module
Once created, another processor or thread can open the ListMP instance
by calling ListMP_open().

while (ListMP_open("myListMP", &handle1, NULL) < 0) {

 ;

}

ListMP uses SharedRegion pointers (see Section 3.8), which are
portable across processors, to translate addresses for shared memory.
The processor that creates the ListMP instance must specify the shared
memory in terms of its local address space. This shared memory must
have been defined in the SharedRegion module by the application.

The ListMP module has the following constraints:

❏ ListMP elements to be added/removed from the linked-list must be
stored in a shared memory region.

❏ The linked list must be on a worst-case cache line boundary for all
the processors sharing the list.

❏ ListMP_open() should be called only when global interrupts are
enabled.

A list item must have a field of type ListMP_Elem as its first field. For
example, the following structure could be used for list elements:

typedef struct Tester {

 ListMP_Elem elem;

 Int scratch[30];

 Int flag;

} Tester;

Besides creating, opening, and deleting a list instance, the ListMP
module provides functions for the following common list operations:

❏ ListMP_empty(). Test for an empty ListMP.

❏ ListMP_getHead(). Get the element from the front of the ListMP.

❏ ListMP_getTail(). Get the element from the end of the ListMP.

❏ ListMP_insert(). Insert element into a ListMP at the current location.

❏ ListMP_next(). Return the next element in the ListMP (non-atomic).

❏ ListMP_prev(). Return previous element in the ListMP (non-atomic).

❏ ListMP_putHead(). Put an element at the head of the ListMP.

❏ ListMP_putTail(). Put an element at the end of the ListMP.

❏ ListMP_remove(). Remove the current element from the middle of
the ListMP.
The Inter-Processor Communication Package 3-27

ListMP Module
This example prints a "flag" field from the list elements in a ListMP
instance in order:

System_printf("On the List: ");

testElem = NULL;

while ((testElem = ListMP_next(handle,

 (ListMP_Elem *)testElem)) != NULL) {

 System_printf("%d ", testElem->flag);

}

This example prints the same items in reverse order:

System_printf("in reverse: ");

elem = NULL;

while ((elem = ListMP_prev(handle, elem)) != NULL) {

 System_printf("%d ", ((Tester *)elem)->flag);

}

This example determines if a ListMP instance is empty:

if (ListMP_empty(handle1) == TRUE) {

 System_printf("Yes, handle1 is empty\n");

}

This example places a sequence of even numbers in a ListMP instance:

/* Add 0, 2, 4, 6, 8 */

for (i = 0; i < COUNT; i = i + 2) {

 ListMP_putTail(handle1, (ListMP_Elem *)&(buf[i]));

}

The instance state information contains a pointer to the head of the
linked-list, which is stored in shared memory. Other attributes of the
instance stored in shared memory include the version, status, and the
size of the shared address.

Other processors can obtain a handle to the linked list by calling
ListMP_open().
3-28

ListMP Module
The following figure shows local memory and shared memory for
processors Proc 0 and Proc 1, in which Proc 0 calls ListMP_create() and
Proc 1 calls ListMP_open().

The cache alignment used by the list is taken from the SharedRegion on
a per-region basis. The alignment must be the same across all
processors and should be the worst-case cache line boundary.

Proc 1Proc 0

next

prev

Local Memory
ListMP state

attrs

head…

Attrs

Linked list

Local Memory

ListMP_Handle

Shared Memory
The Inter-Processor Communication Package 3-29

Heap*MP Modules
3.5 Heap*MP Modules

Note: The Heap*MP modules are not supported for Concerto F28M35x
devices because Concerto does not support shared memory heaps.

The ti.sdo.ipc.heaps package provides three implementations of the
xdc.runtime.IHeap interface.

❏ HeapBufMP. Fixed-size memory manager. All buffers allocated from
a HeapBufMP instance are of the same size. There can be multiple
instances of HeapBufMP that manage different sizes. The
ti.sdo.ipc.heaps.HeapBufMP module is modeled after SYS/BIOS 6's
HeapBuf module (ti.sysbios.heaps.HeapBuf).

❏ HeapMultiBufMP. Each instance supports up to 8 different fixed
sizes of buffers. When an allocation request is made, the
HeapMultiBufMP instance searches the different buckets to find the
smallest one that satisfies the request. If that bucket is empty, the
allocation fails. The ti.sdo.ipc.heaps.HeapMultiBufMP module is
modeled after SYS/BIOS 6's HeapMultiBuf module
(ti.sysbios.heaps.HeapMultiBuf).

❏ HeapMemMP. Variable-size memory manager. HeapMemMP
manages a single buffer in shared memory from which blocks of
user-specified length are allocated and freed. The
ti.sdo.ipc.heaps.HeapMemMP module is modeled after SYS/BIOS
6's HeapMem module (ti.sysbios.heaps.HeapMem).

The main addition to these modules is the use of shared memory and the
management of multi-processor exclusion.

The SharedRegion modules, and therefore the MessageQ module and
other IPC modules that use SharedRegion, use a HeapMemMP instance
internally.

The following subsections use "Heap*MP" to refer to the HeapBufMP,
HeapMultiBufMP, and HeapMemMP modules.

3.5.1 Configuring a Heap*MP Module

In addition to configuring Heap*MP instances, you can set module-wide
configuration properties. For example, the maxNameLen property lets
you set the maximum length of heap names. The track[Max]Allocs
module configuration property enables/disables tracking memory
allocation statistics.
3-30

Heap*MP Modules
A Heap*MP instance uses a NameServer instance to manage
name/value pairs.

The Heap*MP modules make the following assumptions:

❏ The SharedRegion module handles address translation between a
virtual shared address space and the local processor's address
space. If the memory address spaces are identical across all
processors, or if a single processor is being used, no address
translation is required and the SharedRegion module must be
appropriately configured.

❏ Both processors must have the same endianness.

3.5.2 Creating a Heap*MP Instance

Heaps can be created dynamically. You use the Heap*MP_create()
functions to dynamically create Heap*MP instances. As with other IPC
modules, before creating a Heap*MP instance, you initialize a
Heap*MP_Params structure and set fields in the structure to the desired
values. When you create a heap, the shared memory is initialized and the
Heap*MP object is created in local memory. Only the actual buffers and
some shared information reside in shared memory.

The following code example initializes a HeapBufMP_Params structure
and sets fields in it. It then creates and registers an instance of the
HeapBufMP module.

/* Create the heap that will be used to allocate messages. */

HeapBufMP_Params_init(&heapBufMPParams);

heapBufMPParams.regionId = 0; /* use default region */

heapBufMPParams.name = "myHeap";

heapBufMPParams.align = 256;

heapBufMPParams.numBlocks = 40;

heapBufMPParams.blockSize = 1024;

heapBufMPParams.gate = NULL; /* use system gate */

heapHandle = HeapBufMP_create(&heapBufMPParams);

if (heapHandle == NULL) {

 System_abort("HeapBufMP_create failed\n");

}

/* Register this heap with MessageQ */

MessageQ_registerHeap(HeapBufMP_Handle_upCast(heapHandle),

 HEAPID);

The parameters for the various Heap*MP implementations vary. For
example, when you create a HeapBufMP instance, you can configure the
following parameters after initializing the HeapBufMP_Params structure:
The Inter-Processor Communication Package 3-31

Heap*MP Modules
❏ regionId. The index corresponding to the shared region from which
shared memory will be allocated.

❏ name. A name of the heap instance for NameServer (optional).

❏ align. Requested alignment for each block.

❏ numBlocks. Number of fixed size blocks.

❏ blockSize. Size of the blocks in this instance.

❏ gate. A multiprocessor gate for context protection.

❏ exact. Only allocate a block if the requested size is an exact match.
Default is false.

Of these parameters, the ones that are common to all three Heap*MP
implementations are gate, name and regionId.

3.5.3 Opening a Heap*MP Instance

Once a Heap*MP instance is created on a processor, the heap can be
opened on another processor to obtain a local handle to the same shared
instance. In order for a remote processor to obtain a handle to a
Heap*MP that has been created, the remote processor needs to open it
using Heap*MP_open().

The Heap*MP modules use a NameServer instance to allow a remote
processor to address the local Heap*MP instance using a user-
configurable string value as an identifier. The Heap*MP name is the sole
parameter needed to identify an instance.

The heap must be created before it can be opened. An open call matches
the call’s version number with the creator's version number in order to
ensure compatibility. For example:

HeapBufMP_Handle heapHandle;

...

/* Open heap created by other processor. Loop until open. */

do {

 status = HeapBufMP_open("myHeap", &heapHandle);

}

while (status < 0);

/* Register this heap with MessageQ */

MessageQ_registerHeap(HeapBufMP_Handle_upCast(heapHandle),

 HEAPID);
3-32

Heap*MP Modules
3.5.4 Closing a Heap*MP Instance

Heap*MP_close() frees an opened Heap*MP instance stored in local
memory. Heap*MP_close() may only be used to finalize instances that
were opened with Heap*MP_open() by this thread. For example:

HeapBufMP_close(&heapHandle);

Never call Heap*MP_close() if some other thread has already called
Heap*MP_delete().

3.5.5 Deleting a Heap*MP Instance

The Heap*MP creator thread can use Heap*MP_delete() to free a
Heap*MP object stored in local memory and to flag the shared memory
to indicate that the heap is no longer initialized. Heap*MP_delete() may
not be used to finalize a heap using a handle acquired using
Heap*MP_open()—Heap*MP_close() should be used by such threads
instead.

3.5.6 Allocating Memory from the Heap

The HeapBufMP_alloc() function obtains the first buffer off the heap's
freeList.

The HeapMultiBufMP_alloc() function searches through the buckets to
find the smallest size that honors the requested size. It obtains the first
block on that bucket.

If the "exact" field in the Heap*BufMP_Params structure was true when
the heap was created, the alloc only returns the block if the blockSize for
a bucket is the exact size requested. If no exact size is found, an
allocation error is returned.

The HeapMemMP_alloc() function allocates a block of memory of the
requested size from the heap.

For all of these allocation functions, the cache coherency of the message
is managed by the SharedRegion module that manages the shared
memory region used for the heap.
The Inter-Processor Communication Package 3-33

Heap*MP Modules
3.5.7 Freeing Memory to the Heap

The HeapBufMP_free() function returns an allocated buffer to its heap.

The HeapMultiBufMP_free() function searches through the buckets to
determine on which bucket the block should be returned. This is
determined by the same algorithm as the HeapMultiBufMP_alloc()
function, namely the smallest blockSize that the block can fit into.

If the "exact" field in the Heap*BufMP_Params structure was true when
the heap was created, and the size of the block to free does not match
any bucket's blockSize, an assert is raised.

The HeapMemMP_free() function returns the allocated block of memory
to its heap.

For all of these deallocation functions, cache coherency is managed by
the corresponding Heap*MP module.

3.5.8 Querying Heap Statistics

Both heap modules support use of the xdc.runtime.Memory module’s
Memory_getStats() and Memory_query() functions on the heap.

In addition, the Heap*MP modules provide the Heap*MP_getStats(),
Heap*MP_getExtendedStats(), and Heap*MP_isBlocking() functions to
enable you to gather information about a heap.

By default, allocation tracking is often disabled in shared-heap modules
for performance reasons. You can set the HeapBufMP.trackAllocs and
HeapMultiBufMP.trackMaxAllocs configuration properties to true in order
to turn on allocation tracking for their respective modules. Refer to the
CDOC documentation for further information.
3-34

Heap*MP Modules
3.5.9 Sample Runtime Program Flow

The following diagram shows the program flow for a two-processor (or
two-thread) application. This application creates a Heap*MP instance
dynamically.

Initialized heap
Buffer owned by caller

Heap
Heap*MP Creator Heap*MP Opener

create

open
ERROR: Heap not created

Heap*MP_Handle

alloc

close

free

delete

alloc

open
Heap*MP_Handle

free

alloc

Gives ownership (e.g. via

free
The Inter-Processor Communication Package 3-35

GateMP Module
3.6 GateMP Module

Note: The GateMP module is not supported for Concerto F28M35x
devices.

A GateMP instance can be used to enforce both local and remote context
protection. That is, entering a GateMP can prevent preemption by
another thread running on the same processor and simultaneously
prevent a remote processor from entering the same gate. GateMP's are
typically used to protect reads/writes to a shared resource, such as
shared memory.

3.6.1 Creating a GateMP Instance

As with other IPC modules, GateMP instances can only be created
dynamically.

Before creating the GateMP instance, you initialize a GateMP_Params
structure and set fields in the structure to the desired values. You then
use the GateMP_create() function to dynamically create a GateMP
instance.

When you create a gate, shared memory is initialized, but the GateMP
object is created in local memory. Only the gate information resides in
shared memory.

The following code creates a GateMP object:

GateMP_Params gparams;

GateMP_Handle gateHandle;

...

GateMP_Params_init(&gparams);

gparams.localProtect = GateMP_LocalProtect_THREAD;

gparams.remoteProtect = GateMP_RemoteProtect_SYSTEM;

gparams.name = "myGate";

gparams.regionId = 1;

gateHandle = GateMP_create(&gparams, NULL);

A gate can be configured to implement remote processor protection in
various ways. This is done via the params.remoteProtect configuration
property. The options for params.remoteProtect are as follows:

❏ GateMP_RemoteProtect_NONE. Creates only the local gate
specified by the localProtect property.
3-36

GateMP Module
❏ GateMP_RemoteProtect_SYSTEM. Uses the default device-
specific gate protection mechanism for your device. Internally,
GateMP automatically uses device-specific implementations of multi-
processor mutexes implemented via a variety of hardware
mechanisms. Devices typically support a single type of system gate,
so this is usually the correct configuration setting for
params.remoteProtect.

❏ GateMP_RemoteProtect_CUSTOM1 and
GateMP_RemoteProtect_CUSTOM2. Some devices support
multiple types of system gates. If you know that GateMP has multiple
implementations of gates for your device, you can use one of these
options.

Several gate implementations used internally for remote protection are
provided in the ti.sdo.ipc.gates package.

A gate can be configured to implement local protection at various levels.
This is done via the params.localProtect configuration property. The
options for params.localProtect are as follows:

❏ GateMP_LocalProtect_NONE. Uses the XDCtools GateNull
implementation, which does not offer any local context protection.
For example, you might use this option for a single-threaded local
application that still needs remote protection.

❏ GateMP_LocalProtect_INTERRUPT. Uses the SYS/BIOS GateHwi
implementation, which disables hardware interrupts.

❏ GateMP_LocalProtect_TASKLET. Uses the SYS/BIOS GateSwi
implementation, which disables software interrupts.

❏ GateMP_LocalProtect_THREAD. Uses the SYS/BIOS
GateMutexPri implementation, which is based on Semaphores. This
option may use a different gate than the following option on some
operating systems. When using SYS/BIOS, they are equivalent.

❏ GateMP_LocalProtect_PROCESS. Uses the SYS/BIOS
GateMutexPri implementation, which is based on Semaphores.

Other fields you are required to set in the GateMP_Params structure are:

❏ name. The name of the GateMP instance.

❏ regionId. The ID of the SharedRegion to use for shared memory
used by this GateMP instance.
The Inter-Processor Communication Package 3-37

GateMP Module
3.6.2 Opening a GateMP Instance

Once an instance is created on a processor, the gate can be opened on
another processor to obtain a local handle to the same instance.

The GateMP module uses a NameServer instance to allow a remote
processor to address the local GateMP instance using a user-
configurable string value as an identifier rather than a potentially dynamic
address value.

status = GateMP_open("myGate", &gateHandle);

if (status < 0) {

 System_printf("GateMP_open failed\n");

}

3.6.3 Closing a GateMP Instance

GateMP_close() frees a GateMP object stored in local memory.

GateMP_close() should never be called on an instance whose creator
has been deleted.

3.6.4 Deleting a GateMP Instance

GateMP_delete() frees a GateMP object stored in local memory and
flags the shared memory to indicate that the gate is no longer initialized.

A thread may not use GateMP_delete() if it acquired the handle to the
gate using GateMP_open(). Such threads should call GateMP_close()
instead.

3.6.5 Entering a GateMP Instance

Either the GateMP creator or opener may call GateMP_enter() to enter a
gate. While it is necessary for the opener to wait for a gate to be created
to enter a created gate, it isn't necessary for a creator to wait for a gate
to be opened before entering it.

GateMP_enter() enters the caller's local gate. The local gate (if supplied)
blocks if entered on the local processor. If entered by the remote
processor, GateMP_enter() spins until the remote processor has left the
gate.

No matter what the params.localProtection configuration property is set
to, after GateMP_enter() returns, the caller has exclusive access to the
data protected by this gate.
3-38

GateMP Module
A thread may reenter a gate without blocking or failing.

GateMP_enter() returns a "key" that is used by GateMP_leave() to leave
this gate; this value is used to restore thread preemption to the state that
existed just prior to entering this gate.

IArg key;

...

/* Enter the gate */

key = GateMP_enter(gateHandle);

3.6.6 Leaving a GateMP Instance

GateMP_leave() may only called by a thread that has previously entered
this gate via GateMP_enter().

After this method returns, the caller must not access the data structure
protected by this gate (unless the caller has entered the gate more than
once and other calls to leave remain to balance the number of previous
calls to enter).

IArg key;

...

/* Leave the gate */

GateMP_leave(gateHandle, key);

3.6.7 Querying a GateMP Instance

GateMP_query() returns TRUE if a gate has a given quality, and FALSE
otherwise, including cases when the gate does not recognize the
constant describing the quality. The qualities you can query are:

❏ GateMP_Q_BLOCKING. If GateMP_Q__BLOCKING is FALSE, the
gate never blocks.

❏ GateMP_Q_PREEMPTING. If GateMP_Q_PREEMPTING is
FALSE, the gate does not allow other threads to preempt the thread
that has already entered the gate.

3.6.8 NameServer Interaction

The GateMP module uses a ti.sdo.utils.NameServer instance to store
instance information when an instance is created and the name
parameter is non-NULL. The length of this name is limited to 16
characters (by default) including the null terminator ('\0'). This length can
be increased by configuring the GateMP.maxNameLen module
configuration property. If a name is supplied, it must be unique for all
GateMP instances.
The Inter-Processor Communication Package 3-39

GateMP Module
Other modules can use GateMP instances to protect access to their
shared memory resources. For example, the NameServer name tables
are protected by setting the "gate" property of the ti.sdo.utils.NameServer
module.

These examples set the "gate" property for various modules:

heapBufMPParams.gate = GateMP_getDefaultRemote();

listMPParams.gate = gateHandle;

3.6.9 Sample Runtime Program Flow (Dynamic)

The following diagram shows the program flow for a two-processor (or
two-thread) application. This application creates a Gate dynamically.

Initialized gate
Blocked gate
Entered gate

GateM
GateMP
Creator

GateMP
Opener

create

open
FAILURE: Gate not created

GateMP Handle

leave
enter

close

leave

delete

enter

open
GateMP Handle

leave

enter
3-40

Notify Module
3.7 Notify Module

The ti.sdo.ipc.Notify module manages the multiplexing/demultiplexing of
software interrupts over hardware interrupts.

Note: Notify use is the same with Concerto F28M35x devices as for other
devices. See Section 6.3.1 for information about the NotfiyDriverCirc driver used
with the Notify module when you are using Concerto devices.

In order to use any Notify APIs, you must call the Ipc_start() function first,
usually within main(). This sets up all the necessary Notify drivers, shared
memory, and interprocessor interrupts. However, note that if
Ipc.setupNotify is set to FALSE, you will need call Notify_start() outside
the scope of Ipc_start().

To be able to receive notifications, a processor registers one or more
callback functions to an eventId by calling Notify_registerEvent(). The
callback function must have the following signature:

Void cbFxn(UInt16 procId, UInt16 lineId, UInt32 eventId,

 UArg arg, UInt32 payload);

The Notify_registerEvent() function (like most other Notify APIs) uses a
ti.sdo.utils.MultiProc ID and line ID to target a specific interrupt line
to/from a specific processor on a device.

Int status;

armProcId = MultiProc_getId("ARM");

Ipc_start();

/* Register cbFxn with Notify. It will be called when ARM

 * sends event number EVENTID to line #0 on this processor.

 * The argument 0x1010 is passed to the callback function. */

status = Notify_registerEvent(armProcId, 0, EVENTID,

 (Notify_FnNotifyCbck)cbFxn, 0x1010);

if (status < 0) {

 System_abort("Notify_registerEvent failed\n");

}

The line ID number is typically 0 (zero), but is provided for use on systems
that have multiple interrupt lines between processors.

When using Notify_registerEvent(), multiple callbacks may be registered
with a single event. If you plan to register only one callback function for
an event on this processor, you can call Notify_registerEventSingle()
instead of Notify_registerEvent(). Better performance is provided with
Notify_registerEventSingle(), and a Notify_E_ALREADYEXISTS status
is returned if you try to register a second callback for the same event.
The Inter-Processor Communication Package 3-41

Notify Module
Once an event has been registered, a remote processor may "send" an
event by calling Notify_sendEvent(). If the specified event and interrupt
line are both enabled, all callback functions registered to the event will be
called sequentially.

while (seq < NUMLOOPS) {

 Semaphore_pend(semHandle, BIOS_WAIT_FOREVER);

 /* Semaphore_post is called by callback function*/

 status = Notify_sendEvent(armProcId, 0, EVENTID, seq,

 TRUE);

}

In this example, the seq variable is sent as the "payload" along with the
event. The payload is limited to a fixed size of 32 bits.

Since the fifth argument in the previous example call to
Notify_sendEvent() is TRUE, if any previous event to the same event ID
was sent, the Notify driver waits for an acknowledgement that the
previous event was received.

A specific event may be disabled or enabled using the
Notify_disableEvent() and Notify_enableEvent() calls. All notifications on
an entire interrupt line may be disabled or restored using the
Notify_disable() and Notify_restore() calls. The Notify_disable() call does
not alter the state of individual events. Instead, it just disables the ability
of the Notify module to receive events on the specified interrupt line.

"Loopback" mode, which is enabled by default, allows notifications to be
registered and sent locally. This is accomplished by supplying the
processor’s own MultiProc ID to Notify APIs. Line ID 0 (zero) is always
used for local notifications. See the notify_loopback example in
<ipc_install_dir>\packages\ti\sdo\ipc\examples\singlecore. It is important
to be aware of some subtle (but important) differences between remote
and local notifications:

❏ Loopback callback functions execute in the context of the same
thread that called Notify_sendEvent(). This is in contrast to callback
functions called due to another processor's sent notification—such
"remote" callback functions execute in an ISR context.

❏ Loopback callback functions execute with interrupts disabled.

❏ Disabling the local interrupt line causes all notifications that are sent
to the local processor to be lost. By contrast, a notification sent to an
enabled event on a remote processor that has called
Notify_disableEvent() results in a pending notification until the
disabled processor has called Notify_restore().

❏ Local notifications do not support events of different priorities. By
contrast, Notify driver implementations may correlate event IDs with
varying priorities.
3-42

SharedRegion Module
3.8 SharedRegion Module

The SharedRegion module is designed to be used in a multi-processor
environment where there are memory regions that are shared and
accessed across different processors.

Note: The SharedRegion module is not used on Concerto F28M35x
devices. Instead, the IpcMgr module (in the ti.sdo.ipc.family.f28m35x
package) is used to configure access to shared memory by Concerto
devices. See Section B.2.

In an environment with shared memory regions, a common problem is
that these shared regions are memory mapped to different address
spaces on different processors. This is shown in the following figure. The
shared memory region "DDR2" is mapped into Proc0's local memory
space at base address 0x80000000 and Proc1's local memory space at
base address 0x90000000. Therefore, the pointers in "DDR2" need to be
translated in order for them to be portable between Proc0 and Proc1. The
local memory regions for Proc0 and Proc1 are not shared thus they do
not need to be added to the SharedRegion module.

On systems where address translation is not required, translation is a
noop, so performance is not affected.

The SharedRegion module itself does not use any shared memory,
because all of its state is stored locally. The APIs use the system gate for
thread protection.
The Inter-Processor Communication Package 3-43

SharedRegion Module
This module creates a shared memory region lookup table. The lookup
table contains the processor's view of every shared region in the system.
In cases where a processor cannot view a certain shared memory region,
that shared memory region should be left invalid for that processor. Each
processor has its own lookup table.

Each processor's view of a particular shared memory region can be
determined by the same region ID across all lookup tables. At runtime,
this table, along with the shared region pointer, is used to do a quick
address translation.

The lookup table contains the following information about each shared
region:

❏ base. The base address of the region. This may be different on
different processors, depending on their addressing schemes.

❏ len. The length of the region. This should be should be the same
across all processors.

❏ ownerProcId. MultiProc ID of the processor that manages this
region. If an owner is specified, the owner creates a HeapMemMP
instance at runtime. The other cores open the same HeapMemMP
instance.

❏ isValid. Boolean to specify whether the region is valid (accessible) or
not on this processor.

❏ cacheEnable. Boolean to specify whether a cache is enabled for the
region on the local processor.

❏ cacheLineSize. The cache line size for the region. It is crucial that
the value specified here be the same on all processors.

❏ createHeap. Boolean to specify if a heap is created for the region.

❏ name. The name associated with the region.

The maximum number of entries in the lookup table is statically
configurable using the SharedRegion.numEntries property. Entries can
be added during static configuration or at runtime. When you add or
remove an entry in one processor's table, you must update all of the
remaining processors' tables to keep them consistent. The larger the
maximum number of entries, the longer it will take to traverse the lookup
table when searching for the index. Therefore, keep the lookup table
small for better performance and footprint.
3-44

SharedRegion Module
Because each processor stores information about the caching of a
shared memory region in the SharedRegion lookup table, other modules
can (and do) make use of this caching information to maintain coherency
and alignment when using items stored in shared memory.

In order to use the SharedRegion module, the following must be true:

❏ The SharedRegion.numEntries property must be the same on all
processors.

❏ The size of a SharedRegion pointer is 32-bits wide.

❏ The SharedRegion lookup table must contain at least 1 entry for
address translation to occur.

❏ Shared memory regions must not overlap each other from a single
processor's viewpoint.

❏ Regions are not allowed to overlap from a single processor's view.

❏ The SharedRegion with an index of 0 (zero) is used by IPC_start() to
create resource management tables for internal use by other IPC
modules. Thus SharedRegion "0" must be accessible by all
processors. Your applications can also make use of SharedRegion
"0", but must be aware of memory limitations.

3.8.1 Adding Table Entries Statically

To create a shared region lookup table in the RTSC configuration, first
determine the shared memory regions you plan to use.

Next, specify the maximum number of entries in the lookup table with the
SharedRegion.numEntries property. You can specify a value for the
SharedRegion.cacheLineSize configuration property, which is the default
cache line size if no size is specified for a region. You can also specify the
value of the SharedRegion.translate property, which should only be set
to false if all shared memory regions have the same base address on all
processors. Setting the translate property to false improves performance
because no address translation is performed. For example:

var SharedRegion =

 xdc.useModule('ti.sdo.ipc.SharedRegion');

SharedRegion.cacheLineSize = 32;

SharedRegion.numEntries = 4;

SharedRegion.translate = true;
The Inter-Processor Communication Package 3-45

SharedRegion Module
Then, use the SharedRegion.setEntryMeta() method in the configuration
file to specify the parameters of the entry.

var SHAREDMEM = 0x0C000000;

var SHAREDMEMSIZE = 0x00200000;

SharedRegion.setEntryMeta(0,

 { base: SHAREDMEM,

 len: SHAREDMEMSIZE,

 ownerProcId: 0,

 isValid: true,

 cacheEnable: true,

 cacheLineSize: 128,

 createHeap: true,

 name: "internal_shared_mem" });

If, during static configuration, you don't know the base address for every
processor, you should set the "isValid" field for an entry for which you
don’t yet know the base address to "false". Storing this information will
allow it to be completed at runtime.

The following figure shows the configuration of a SharedRegion table for
the system in the following figure. This system has seven processors and
two shared memory regions. Region 0 ("ext") is accessible by all
processors. Region 1 ("local") is accessible only by processors 1 to 6.

If the "createHeap" field is set to true, a HeapMemMP instance is created
within the SharedRegion.
3-46

SharedRegion Module
3.8.2 Modifying Table Entries Dynamically

In the application’s C code, a shared memory region can be modified in
the SharedRegion table by calling SharedRegion_setEntry().

Typically, applications configure SharedRegion table entries statically as
described in the previous section, and only modify the table entries
dynamically in applications where it is possible for shared memory region
availability to change dynamically.

The call to SharedRegion_setEntry() must specify all the fields in the
SharedRegion_Entry structure. The index specified must be the same
across all processors for the same shared memory region. The index also
must be smaller than the maxNumEntries property, otherwise an assert
will be triggered.

typedef struct SharedRegion_Entry {

 Ptr base;

 SizeT len;

 UInt16 ownerProcId;

 Bool isValid;

 Bool cacheEnable;

 SizeT cacheLineSize;

 Bool createHeap;

 String name;

} SharedRegion_Entry;

You can use the SharedRegion_getEntry() API to fill the fields in a
SharedRegion_Entry structure. Then, you can modify fields in the
structure and call SharedRegion_setEntry() to write the modified fields
back to the SharedRegion table.

If you want to reuse an index location in the SharedRegion table, you can
call SharedRegion_clear() on all processors to erase the existing entry at
that index location.

3.8.3 Using Memory in a Shared Region

Note that the SharedRegion with an index of 0 (zero) is used by
IPC_start() to create resource management tables for internal use by the
GateMP, NameServer, and Notify modules. Thus SharedRegion "0" must
be accessible by all processors.

This example allocates memory from a SharedRegion:

buf = Memory_alloc(SharedRegion_getHeap(0),

 sizeof(Tester) * COUNT, 128, NULL);
The Inter-Processor Communication Package 3-47

SharedRegion Module
3.8.4 Getting Information About a Shared Region

The shared region pointer (SRPtr) is a 32-bit portable pointer composed
of an ID and offset. The most significant bits of a SRPtr are used for the
ID. The ID corresponds to the index of the entry in the lookup table. The
offset is the offset from the base of the shared memory region. The
maximum number of table entries in the lookup table determines the
number of bits to be used for the ID. An increase in the id means the
range of the offset would decrease. The ID is limited to 16-bits.

Here is sample code for getting the SRPtr and then getting the real
address pointer back.

SharedRegion_SRPtr srptr;

UInt16 id;

// Get the id of the address if id is not already known.

id = SharedRegion_getId(addr);

// Get the shared region pointer for the address

srptr = SharedRegion_getSRPtr(addr, id);

// Get the address back from the shared region pointer

addr = SharedRegion_getPtr(srptr);

In addition, you can use the SharedRegion_getIdByName() function to
pass the name of a SharedRegion and receive the ID number of the
region.

You can use the SharedRegion_getHeap() function to get a handle to the
heap associated with a region using the heap ID.

You can retrieve a specific shared region's cache configuration from the
SharedRegion table by using the SharedRegion_isCacheEnabled() and
SharedRegion_getCacheLineSize() APIs.
3-48

Chapter 4

The Utilities Package

This chapter introduces the modules in the ti.sdo.utils package.

4.1 Modules in the Utils Package . 4–2

4.2 List Module. 4–2

4.3 MultiProc Module. 4–6

4.4 NameServer Module . 4–11

Topic Page
4-1

Modules in the Utils Package
4.1 Modules in the Utils Package

The ti.sdo.utils package contains modules that are used as utilities by
other modules in the IPC product.

■ List. This module provides a doubly-linked list manager for use
by other modules. See Section 4.2.

■ MultiProc. This module stores processor IDs in a centralized
location for multi-processor applications. See Section 4.3.

■ NameServer. This module manages name/value pairs for use by
other modules. See Section 4.4.

4.2 List Module

The ti.sdo.utils.List module provides support for creating lists of objects.
A List is implemented as a doubly-linked list, so that elements can be
inserted or removed from anywhere in the list. Lists do not have a
maximum size.

Note: List module use is the same for Concerto F28M35x devices as for
other devices.

4.2.1 Basic FIFO Operation of a List

To add a structure to a List, its first field needs to be of type List_Elem.
The following example shows a structure that can be added to a List. A
List has a "head", which is the front of the list. List_put() adds elements
to the back of the list, and List_get() removes and returns the element at
the head of the list. Together, these functions support a FIFO queue.
4-2

List Module
Run-time example: The following example demonstrates the basic List
operations—List_put() and List_get().

/* This structure can be added to a List because the first

 * field is a List_Elem. Declared globally. */

typedef struct Rec {

 List_Elem elem;

 Int data;

} Rec;

...

List_Handle myList; /* in main() */

Rec r1, r2;

Rec* rp;

r1.data = 100;

r2.data = 200;

/* No parameters are needed to create a List. */

myList = List_create(NULL, NULL);

/* Add r1 and r2 to the back of myList. */

List_put(myList, &(r1.elem));

List_put(myList, &(r2.elem));

/* get the records and print their data */

while ((rp = List_get(myList)) != NULL) {

 System_printf("rec: %d\n", rp->data);

}

The example prints the following:

rec: 100

rec: 200

4.2.2 Iterating Over a List

The List module also provides several APIs for looping over a List.

List_next() with NULL returns the element at the front of the List (without
removing it). List_next() with an elem returns the next elem. NULL is
returned when the end of the List is reached.

Similarly, List_prev() with NULL returns the tail. List_prev() with an elem
returns the previous elem. NULL is returned when the beginning of the
List is reached.
The Utilities Package 4-3

List Module
Run-time example: The following example demonstrates one way to
iterate over a List once from beginning to end. In this example, "myList"
is a List_Handle.

List_Elem *elem = NULL;

Rec* rp;

...

/* To start the search at the beginning of the List */

rp = NULL;

/* Begin protection against modification of the List */

key = Gate_enterSystem();

while ((elem = List_next(myList, elem)) != NULL) {

 System_printf("rec: %d\n", rp->data);

}

/* End protection against modification of the List */

Gate_leaveSystem(key);

4.2.3 Inserting and Removing List Elements

Elements can also be inserted or removed from anywhere in the middle
of a List using List_insert() and List_remove(). List_insert() inserts an
element in front of the specified element. Use List_putHead() to place an
element at the front of the List and List_put() to place an element at the
end of the List.

List_remove() removes the specified element from whatever List it is in.

Note that List does not provide any APIs for inserting or removing
elements at a given index in the List.

Run-time example: The following example demonstrates List_insert()
and List_remove():

/* Insert r2 in front of r1 in the List. */

List_insert(myList, &(r1.elem), &(r2.elem));

/* Remove r1 from the List. */

List_remove(myList, &(r1.elem));
4-4

List Module
Run-time example: The following example treats the List as a LIFO
stack using List_putHead() and List_get():

List_Elem elem[NUMELEM];

List_Elem *tmpElem;

// push onto the top (i.e. head)

for (i = 0; i < NUMELEM; i++) {

 List_putHead(listHandle, &(elem[i]));

}

// remove the buffers in FIFO order.

while((tmpElem = List_get(listHandle)) != NULL) {

 // process tmpElem

}

4.2.4 Atomic List Operations

Lists are commonly shared across multiple threads in the system, which
might lead to concurrent modifications of the List by different threads,
which would corrupt the List. List provides several "atomic" APIs that
disable interrupts before operating on the List. These APIs are List_get()
List_put(), List_putHead(), and List_empty().

An atomic API completes in core functionality without being interrupted.
Therefore, atomic APIs are thread-safe. An example is List_put().
Multiple threads can call this API at the same time. The threads do not
have to manage the synchronization.

Other APIs—List_prev(), List_next(), List_insert(), and List_remove()—
should be protected by the application.
The Utilities Package 4-5

MultiProc Module
4.3 MultiProc Module

Many IPC modules require the ability to uniquely specify and identify
processors in a multi-processor environment. The MultiProc module
centralizes processor ID management into one module. Most multi-
processor IPC applications require that you configure this module using
the MultiProc.setConfig() function in the *.cfg script. The setConfig()
function tells the MultiProc module:

❏ The specific processor for which this application is being built.

❏ The processors in this cluster. A "cluster" is a set of processors within
a system that share some memory and for which notification between
those processors is needed.

Note: MultiProc module use is the same for Concerto F28M35x devices as
for other devices.

Most systems contain a single cluster. For systems with multiple clusters,
you also need to configure the numProcessors and baseIdOfCluster
properties. See Section 4.3.1 for examples that configure systems with
multiple clusters.

Each processor reference by the MultiProc module can be uniquely
identified by either its name string or an integer ranging from 0 to
MultiProc.maxProcessors - 1.

The following RTSC configuration statements set up a MultiProc array. At
runtime, the "DSP" processor running this configuration gets assigned an
ID value of 2. The other processors in the system are "VIDEO" with a
processor ID of 0 and "DSS" with a processor ID of 1.

/* DSP will get assigned processor id 2. */

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

MultiProc.setConfig("DSP", ["VIDEO", "DSS", "DSP"]);

The ID is a software-only setting. It does not correlate to hardware core
IDs or any other type of hardware identification. For devices with more
than one core, each core must have its own unique processor ID. The ID
is also independent of any OS setting.

The processor ID is not always known at configuration time. It might need
to be determined at initialization time via a GPIO pin, flash setting, or
some other method. You can call the MultiProc_setLocalId() API (with the
restriction that it must be called before module startup) to set the
processor ID. However, other modules that use MultiProc need to know
that the static ID will be changed during initialization. Setting the local
name to NULL in the MultiProc.setConfig statement in the configuration
4-6

MultiProc Module
indicates that the MultiProc_setLocalId() API will be used at runtime.
Other modules that use MultiProc should act accordingly by deferring
processing until the actual ID is known.

For example, the following fragment of configuration code requires that
the MultiProc_setLocalId() API be run during startup to fill in the NULL
processor name.

/* Specify startup function */

var Startup = xdc.useModule('xdc.runtime.Startup');

Startup.firstFxns.$add(’&setMyId’);

/* Specify MultiProc config; current processor unknown */

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

MultiProc.setConfig(null, ["CORE0", "CORE1", "CORE2"]);

Then, the application code could contain the following setMyID() function
to be run at startup:

Void setMyId()

{

 UInt16 procId;

 Int status;

 //

 // Board specific determination of processor id.

 // Example: GPIO_READ reads register of GPIO pin 5

 //

 if (GPIO_READ(5) == 0) {

 procId = 0;

 }

 else {

 procId = 1;

 }

 MultiProc_setLocalId(procId);

}

Your application can query the MultiProc table using various runtime
APIs.

At runtime, the MultiProc_getId() call returns the MultiProc ID for any
processor name. At config-time, the MultiProc.getIdMeta() call returns
the same value. For example:

core1ProcId = MultiProc_getId("CORE1");
The Utilities Package 4-7

MultiProc Module
MultiProc_self() returns the processor ID of the processor running the
API. For example:

System_printf("My MultiProc id = %d\n", MultiProc_self());

MultiProc_getBaseIdOfCluster() returns the MultiProc ID of the base
processor in the cluster to which this processor belongs.

The MultiProc_getName() API returns that processor name if given the
MultiProc ID. For example:

core0Name = MultiProc_getName(0);

MultiProc_getNumProcessors() evaluates to the total number of
processors.

System_printf("Number of processors in the system = %d\n",

 MultiProc_getNumProcessors());

MultiProc_getNumProcsInCluster() returns the number of processors in
the cluster to which this processor belongs.

4.3.1 Configuring Clusters With the MultiProc Module

A "cluster" is a set of processors within a system that share some
memory and for which notification between those processors is needed.
If your system has multiple clusters, you need to configure the MultiProc
module’s numProcessors and baseIdOfCluster properties in addition to
calling the MultiProc.setConfig() function.

Notifications are not supported between different clusters.

For example, in a system with two ’C6678 devices that each use eight
homogeneous cores, you could configure the first ’C6678 device as
follows:

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

MultiProc.setConfig(null, ["CORE0", "CORE1", "CORE2",

 "CORE3", "CORE4", "CORE5", "CORE6", "CORE7"]);

MultiProc.baseIdOfCluster = 0;

MultiProc.numProcessors = 16;

You could configure the second ’C6678 device as follows:

var MultiProc = xdc.useModule('ti.sdo.utils.MultiProc');

MultiProc.setConfig(null, ["CORE0", "CORE1", "CORE2",

 "CORE3", "CORE4", "CORE5", "CORE6", "CORE7"]);

MultiProc.baseIdOfCluster = 8;

MultiProc.numProcessors = 16;
4-8

MultiProc Module
Notice that the MultiProc.numProcessors property specifies the total
number of processors in the system, while the length of the array passed
to setConfig() specifies the number of processors in the cluster. (If you
are not using multiple clusters, the numProcessors property is configured
automatically.)

The MultiProc.baseIdOfCluster property is set to the MultiProc ID number
you want to use for the first processor in the array for this cluster. For
example, if there are 8 processors in a cluster, the baseIdOfCluster
property should be 0 for the first cluster and 8 for the second cluster.

The Ipc_start() and Ipc_attach() APIs can only be used to attach and
synchronizes with processors in the same cluster.

To create a connection between cores in different clusters, you must
manually create a connection using the MessageQ and
ti.sdo.ipc.NameServerMessageQ modules. The NameServerMessageQ
module supports NameServer requests between different clusters by
using MessageQ, which in turns uses the MessageQ transport to send a
NameServer request.

You can control the timeout period for the NameServerMessageQ
module by configuring its timeoutInMicroSecs parameter, which defaults
to 1 second. If a response is not received within the timeout period, the
NameServer request returns a failure status. The
NameServerRemoteNotify module also has a timeoutInMicroSecs
parameter that you can configure; it defaults to wait forever.

Creating a connection between cores in different clusters allows you to
call MessageQ_open() even for a core on a different cluster. Note that
these calls must occur after the MessageQ heap has been registered,
because they allocate memory from the heap.

Once the connection has been created, MessageQ can be used between
different processors on different clusters just as it is used between
different processors in the same cluster.
The Utilities Package 4-9

MultiProc Module
The following example function creates a NameServerMessageQ and
TransportXXX to communicate remotely with a processor in a different
cluster. The "remoteProcId" would be specified to be the MultiProc ID of
the processor in the system. "TransportXXX" must be a copy-based
transport that does not require any shared memory. You would need to
create such a transport, because IPC does not provide one.

Void myRemoteCreateFunction(Uint16 remoteProcId)

{

 NameServerMessageQ_Params nsParams;

 NameServerMessageQ_Handle nsHandle;

 TransportXXX_Handle tranHandle;

 TransportXXX_Params tranParams;

 Error_Block eb;

 Error_init(&eb);

 /*

 * Note: You must register a MessageQ heap prior to

 * calling NameServerMessageQ_create().

 */

 /* init nsParams */

 NameServerMessageQ_Params_init(&nsParams);

 /* create driver to remote processor */

 nsHandle = NameServerMessageQ_create(

 remoteProcId, /* MultiProc ID of proc on 2nd cluster */

 &nsParams,

 &eb);

 if (nsHandle == NULL) {

 SYS_abort("NameServerMessageQ_create() failed");

 }

 /* initialize the transport parameters */

 TransportXXX_Params_init(&tranParams);

 tranHandle = TransportXXX_create(

 remoteProcId, /* MultiProc ID of proc on 2nd cluster */

 &tranParams,

 &eb);

 if (tranHandle == NULL) {

 SYS_abort("TransportXXX_create() failed");

 }

}

4-10

NameServer Module
4.4 NameServer Module

The NameServer module manages local name/value pairs. This enables
an application and other modules to store and retrieve values based on
a name.

Note: NameServer module use is essentially the same for Concerto
F28M35x devices as for other devices.

The NameServer module maintains thread-safety for its APIs. However,
NameServer APIs cannot be called from an interrupt (that is, Hwi
context). They can be called from Swis and Tasks.

This module supports different lengths of values. The NameServer_add()
and NameServer_get() functions support variable-length values. The
NameServer_addUInt32() function is optimized for UInt32 variables and
constants.

The NameServer module currently does not perform any endian or word
size conversion. Also there is no asynchronous support at this time.

You can create NameServer instances dynamically, but not statically.

To create a NameServer instance dynamically, initialize a
NameServer_Params structure with NameServer_Params_init() and
customize the values as needed. The parameters include the following:

❏ checkExisting. If true, NameServer check to see if a name already
exists in the name/value table before adding it.

❏ maxNameLen. Specify the maximum length, in characters, of the
name field in the table.

❏ maxRuntimeEntries. Specify the maximum number of name/value
pairs this table can hold. If you set this parameter to
NameServer_ALLOWGROWTH, then NameServer allows dynamic
growth of the table.

❏ maxValueLen. Specify the maximum length, in MAUs, of the value
field in the table.

❏ tableHeap. The heap to allocate the name/value table from when
allocating dynamically. If this parameter is NULL, the heap used for
object allocation is also used here.

After setting parameters, use NameServer_create() to create an
instance. Each NameServer instance manages its own name/value table.
The Utilities Package 4-11

NameServer Module
The following C example creates a NameServer instance dynamically.
The instance allows a maximum of 10 runtime entries (instead of using
ALLOWGROWTH). This example also specifies where to allocate the
memory needed for the tables (instead of using the default).

NameServer_Handle NSHandle;

NameServer_Params params;

NameServer_Params_init(¶ms);

params.tableHeap = HeapStd_Handle_upCast(myHeap);

params.maxRuntimeEntries = 10;

NSHandle = NameServer_create("myTable", ¶ms);

if (NSHandle == NULL) {

 // manage error

}

This example C code adds and removes entries at run-time:

Ptr key;

key = NameServer_addUInt32(NSHandle, "volume", 5);

if (key == NULL) {

 // manage error

}

NameServer_removeEntry(NSHandle, key);

// or

NameServer_remove(NSHandle, "volume");

The following example searches the NameServer instance pointed to by
"handle" on the specified processor for a name-value pair with the name
stored in nameToFind. It returns the value of the pair to valueBuf.

/* Search NameServer */

status = NameServer_get(NSHandle, nameToFind, valueBuf,

 sizeof(UInt32), procId);

Using different parameters for different table instances allows you to
meet requirements like the following:

❏ Size differences. The maxValueLen parameter specifies the
maximum length, in MAUs, of the value field in the table. One table
could allow long values (for example, > 32 bits), while another table
could be used to store integers. This customization enables better
memory usage.

❏ Performance. Multiple NameServer tables can improve the search
time when retrieving a name/value pair.
4-12

NameServer Module
❏ Relax name uniqueness. Names in a specific table must be unique,
but the same name can be used in different tables.

When you call NameServer_delete(), the memory for the name/values
pairs is freed. You do not need to call NameServer_remove() on the
entries before deleting a NameServer instance.

In addition to the functions mentioned above, the NameServer module
provides the following APIs:

❏ NameServer_get() Retrieves the value portion of a local name/value
pair from the specified processor.

❏ NameServer_getLocal() Retrieves the value portion of a local
name/value pair.

❏ NameServer_remove() Removes a name/value pair from the table
given a name.

❏ NameServer_removeEntry() Removes an entry from the table
given a pointer to an entry.

NameServer maintains the name/values table in local memory, not in
shared memory. However the NameServer module can be used in a
multiprocessor system. The module communicates with other processors
via NameServer Remote drivers, which are implementations of the
INameServerRemote interface. The communication to the other
processors is dependent on the Remote drivers implementation. When a
remote driver is created, it registers with NameServer via the
NameServer_registerRemoteDriver() API.

The NameServer module uses the MultiProc module to identify different
processors. Which remote processors to query and the order in which
they are queried is determined by the procId array passed to the
NameServer_get() function.
The Utilities Package 4-13

NameServer Module
4-14

Chapter 5

Porting IPC

This chapter provides an overview of the steps required to port IPC to
new devices or systems.

5.1 Interfaces to Implement . 5–2

5.2 Other Porting Tasks . 5–2

Topic Page
5-1

Interfaces to Implement
5.1 Interfaces to Implement

When porting IPC to new devices, you may need to create custom
implementations of the following interfaces. You may find that the
provided implementations of these interfaces meet your needs, so don’t
assume that you will need to create custom implementation in all cases.

❏ “IInterrupt” for use by Notify. The interface definition is in
ti.sdo.ipc.notifyDrivers.IInterrupt.

❏ “IGateMPSupport” for use by GateMP. The interface definition is in
ti.sdo.ipc.interfaces.IGateMPSupport.

❏ “IMessageQTransport” and “ITransportSetup” for use by MessageQ.
Interface definitions are in ti.sdo.ipc.interfaces.IMessageQTransport
and ti.sdo.ipc.interfaces.ITransportSetup.

❏ “INotifyDriver” for use by Notify. The interface definition is in
ti.sdo.ipc.interfaces.INotifyDriver.

❏ “INotifySetup” module, which defines interrupt mappings, for use by
Notify. The interface definition is in ti.sdo.ipc.interfaces.INotifySetup.

For details about the interfaces, see the IPC online documentation.

5.2 Other Porting Tasks

You will likely need to specify custom shared region(s) in your
configuration file. For details, see Section 3.8, SharedRegion Module.

Optionally, you may implement custom Heaps and hardware-specific
versions of other IPC modules.
5-2

Chapter 6

Optimizing IPC Applications

This chapter provides hints for improving the runtime performance and
shared memory usage of applications that use IPC.

6.1 Compiler and Linker Optimization . 6–2

6.2 Optimizing Runtime Performance . 6–5

6.3 Optimizing Notify and MessageQ Latency . 6–6

6.4 Optimizing Shared Memory Usage . 6–9

6.5 Optimizing Local Memory Usage . 6–11

6.6 Optimizing Code Size . 6–11

Topic Page
6-1

Compiler and Linker Optimization
6.1 Compiler and Linker Optimization

You can optimize your application for better performance and code size
or to give you more debugging information by selecting different ways of
compiling and linking your application. For example, you can do this by
linking with versions of the SYS/BIOS and IPC libraries that were
compiled differently.

The choices you can make related to compiler and linker optimization are
located in the following places:

❏ RTSC Build-Profile. You see this field when you are creating a new
CCS project or modifying the CCS Build settings. We recommend
that you use the "release" setting. The "release" option is preferred
even when you are creating and debugging an application; the
"debug" option is mainly intended for internal use by Texas
Instruments. The "release" option results in a somewhat smaller
executable that can still be debugged. This build profile primarily
affects how Codec Engine and some device drivers are built.

Note: The "whole_program" and "whole_program_debug" options for the
RTSC Build-Profile have been deprecated, and are no longer
recommended. The option that provides the most similar result is to set the
BIOS.libType configuration property to BIOS.LibType_Custom.

❏ CCS Build Configuration. This setting in the CCS Build settings
allows you to choose between and customize multiple build
configurations. Each configuration can have the compiler and linker
settings you choose.

❏ BIOS.libType configuration property. You can set this property in
XGCONF or by editing the .cfg file in your project. This property lets
you select from two pre-compiled versions of the SYS/BIOS and IPC
libraries or to have a custom version of the SYS/BIOS and IPC
libraries compiled based on the needs of your application. See the
table and discussion that follow for more information.

The options for the BIOS.libType configuration property are as follows:

BIOS.libType
Compile
Time Logging

Code
Size

Run-Time
Performance

Instrumented
(BIOS.LibType_Instrumented)

Fast On Good Good

Non-Instrumented
(BIOS.LibType_NonInstrumented)

Fast Off Better Better
6-2

Compiler and Linker Optimization
❏ Instrumented. (default) This option links with pre-built SYS/BIOS
(and IPC) libraries that have instrumentation available. All Asserts
and Diags settings are checked. Your configuration file can enable or
disable various Diags and logging related settings. However, note
that the checks to see if Diags are enabled before outputting a Log
event are always performed, which has an impact on performance
even if you use the ALWAYS_ON or ALWAYS_OFF setting. The
resulting code size when using this option may be too large to fit on
some targets, such as C28x and MSP430. This option is easy to use
and debug and provides a fast build time.

❏ Non-Instrumented. This option links with pre-built SYS/BIOS (and
IPC) libraries that have instrumentation turned off. No Assert or Diag
settings are checked, and logging information is not available at run-
time. The checking for Asserts and Diags is compiled out of the
libraries, so run-time performance and code size are optimized.
Checking of Error_Blocks and handling errors in ways other than
logging an event are still supported. This option is easy to use and
provides a fast build time.

❏ Custom. This option builds custom versions of the SYS/BIOS (and
IPC) libraries that contain the modules and APIs that your application
needs to access. If you have not used a particular module in your .cfg
file or your C code (and it is not required internally by a SYS/BIOS
module that is used), that module is not contained in the custom
libraries compiled for your application. This option provides the best
run-time performance and best code size given the needs of your
application. Instrumentation is available to whatever extent your
application configures it.

The first time you build a project with the custom libType, the build will
be longer. The custom libraries are stored in the "src" directory of
your project. Subsequent builds may be faster; libraries do not need
to be rebuilt unless you change one of the few configuration
properties that affect the build settings, or you use an additional
module that wasn’t already used in the previous configuration.

Custom
(BIOS.LibType_Custom)

Fast (slow
first time)

As configured Best Best

Debug
(BIOS.LibType_Debug)

Slower As configured -- --

BIOS.libType
Compile
Time Logging

Code
Size

Run-Time
Performance
Optimizing IPC Applications 6-3

Compiler and Linker Optimization
Note: If you disable SYS/BIOS Task or Swi scheduling, you must use the
"custom" option in order to successfully link your application.

The custom option uses program optimization that removes many
initialized constants and small code fragments (often "glue" code)
from the final executable image. Such classic optimizations as
constant folding and function inlining are used, including across
module boundaries. The custom build preserves enough debug
information to make it still possible to step through the optimized
code in CCS and locate global variables.

❏ Debug. This option is not recommended; it is intended for internal
use by Texas Instruments developers.

The following example statements set the BIOS.libType configuration
property:

var BIOS = xdc.useModule('ti.sysbios.BIOS');

BIOS.libType = BIOS.LibType_Custom;

If you use the custom option for the BIOS.libType, you can also set the
BIOS.customCCOpts property to customize the C compiler command-
line options used when compiling the SYS/BIOS libraries. If you want to
change this property, it is important to first examine and understand the
default command-line options used to compile the SYS/BIOS libraries for
your target. You can see the default in XGCONF or by placing the
following statement in your configuration script and building the project:

print("customCCOpts =", BIOS.customCCOpts);

Be careful not to cause problems for the SYS/BIOS compilation when you
modify this property. For example, the --program_level_compile option is
required. (Some --define and --include_path options are used on the
compiler command line but are not listed in the customCCOpts definition;
these also cannot be removed.)

For example, to create a debuggable custom library, you can remove the
-o3 option from the BIOS.customCCOpts definition by specifying it with
the following string for a C64x+ target:

BIOS.customCCOpts = "-mv64p --abi=eabi -q -mi10 -mo -pdr -
pden -pds=238 -pds=880 -pds1110 --embed_inline_assembly
--program_level_compile -g";
6-4

Optimizing Runtime Performance
6.2 Optimizing Runtime Performance

You can use one or more of the following techniques to improve the
runtime performance of IPC applications:

❏ After you have finished debugging an application, you can disable
asserts and logging with the following configuration statements:

 var Diags = xdc.useModule("xdc.runtime.Diags");

 var Defaults = xdc.useModule('xdc.runtime.Defaults');

 Defaults.common$.diags_ASSERT = Diags.ALWAYS_OFF;

 Defaults.common$.logger = null;

❏ If shared memory has the same address on all processors, you can
use the following configuration statement to set the
SharedRegion.translate property to false. See Section 3.8.1 for more
about SharedRegion configuration.

 SharedRegion.translate = false;

❏ Ensure that code, data, and shared data are all placed in cacheable
memory. Refer to the SYS/BIOS documentation for information on
how to configure a cache. See the TI SYS/BIOS Real-time Operating
System v6.x User’s Guide (SPRUEX3) for details.

❏ You can reduce contention between multiple processors and multiple
threads by creating a new gate for use by a new IPC module
instance. Leaving the params.gate property set to NULL causes the
default system GateMP instance to be used for context protection.
However, in some cases it may be optimal to create a new GateMP
instance and supply it to the instance creation. See Section 3.6.1 for
more information. For example:

 GateMP_Params gateParams;

 GateMP_Handle gateHandle;

 HeapBufMP_Params heapParams;

 GateMP_Params_init(&gateParams);

 gateHandle = GateMP_create(&gateParams);

 HeapBufMP_Params_init(&heapParams);

 heapParams.gate = gateHandle;

❏ If a unicache is shared between two cores in shared memory and you
expect to share certain IPC instances (such as a GateMP or ListMP)
solely between those two cores, you may be able to improve
performance by creating a SharedRegion with cache disabled for use
between those two cores only. Since region 0 needs to be accessible
by all cores on a system, region 1 can be created with a cache line
size of 0 and a cacheEnable configuration of FALSE. Any IPC
Optimizing IPC Applications 6-5

Optimizing Notify and MessageQ Latency
instance created within a SharedRegion inherits the cache settings
(the cacheEnabled flag and the cacheLineSize) from this region.
Therefore, unnecessary cache operations can be avoided by
creating an instance in region 1.

The following configuration statements create a SharedRegion with
the cache disabled (on OMAP4430):

 SharedRegion.setEntryMeta(1, /* Create shared region 1 */

 { base: 0x86000000,

 len: 0x10000,

 ownerProcId: 0,

 isValid: true,

 cacheEnabled: false, /* Cache operations unneeded */

 cacheLineSize: 0, /* Cache padding unneeded */

 name: "DDR2",

 });

The following C code creates a HeapBufMP instance in this
SharedRegion:

 HeapBufMP_Params heapParams;

 HeapBufMP_Handle heapHandle;

 HeapBufMP_Params_init(&heapParams);

 heapParams.regionId = 1;

 heapHandle = HeapBufMP_create(&heapParams);

This heap can be used by either of the Cortex M3 cores on an
OMAP4430, because they both share a unicache. Do not use this
heap (or anything else belonging to a SharedRegion with caching
disabled) from any other processor if the shared memory belonging
to the SharedRegion is cacheable.

6.3 Optimizing Notify and MessageQ Latency

By default, IPC applications are configured to use the
ti.sdo.ipc.notifyDrivers.NotifyDriverShm Notify driver and the
ti.sdo.ipc.transports.TransportShm MessageQ transport. These modules
are used by default because they offer backward compatibility with older
IPC/SysLink releases. In addition, these modules may offer functionality
not supported by their newer, lower-latency counterparts.

If your application does not need functionality provided only by the default
Notify drivers or MessageQ transport, you can reduce the latency by
switching to alternative MessageQ transports and/or Notify drivers.
6-6

Optimizing Notify and MessageQ Latency
6.3.1 Choosing and Configuring Notify Drivers

To switch to a different Notify driver, set the Notify.SetupProxy
configuration to the family-specific Notify setup module. For example, the
following statements configure an application on the DM6446 to use the
NotifyDriverCirc driver for that device:

var Notify = xdc.useModule(‘ti.sdo.ipc.Notify’);

Notify.SetupProxy =

 xdc.useModule(‘ti.sdo.ipc.family.dm6446.NotifyCircSetup’);

IPC provides the following Notify drivers. Each has a corresponding
setup module that should be used as the Notify.SetupProxy module.

Table 6-1. Notify Driver Modules and Corresponding Setup Modules

Modules and Description

Supports
Disabling/
Enabling
Events Latency

ti.sdo.ipc.notifyDrivers.NotifyDriverShm
ti.sdo.ipc.family.<family>.NotifySetup

This shared-memory Notify driver offers room for a single pending notifi-
cation in shared memory per event. This is the default driver on non-
F28M35x devices.

Yes Default

ti.sdo.ipc.notifyDrivers.NotifyDriverCirc
ti.sdo.ipc.family.<family>.NotifyCircSetup

This shared-memory Notify driver uses a circular buffer to store notifica-
tions. Unlike NotifyDriverShm, this driver stores all notifications in the
same circular buffer (whose size is configurable).

No Better than
NotifyDriverShm

ti.sdo.ipc.family.ti81xx.NotifyDriverMbx
ti.sdo.ipc.family.ti81xx.NotifyMbxSetup

This TI81xx-only Notify driver uses the hardware mailbox. This driver is
not usable by other devices. Notifications are stored in hardware mailbox
queues present on TI81xx devices.

No Better than
NotifyDriverCirc
and
NotifyDriverShm

ti.sdo.ipc.family.f28m35x.NotifyDriverCirc
ti.sdo.ipc.family.f28m35x.NotifyCircSetup

This F28M35x-only (Concerto) shared-memory Notify driver uses a cir-
cular buffer to store notifications. This is the only Notify driver that works
with the F28M35x device.

No -- only Notify
driver for
F28M35x --
Optimizing IPC Applications 6-7

Optimizing Notify and MessageQ Latency
6.3.2 Choosing and Configuring MessageQ Transports

Similarly, to use an alternative MessageQ transport, configure the
MessageQ.SetupTransportProxy property to use the transport’s
corresponding Transport Setup proxy. For example, to use the
TransportShmNotify module, use the following configuration:

var MessageQ = xdc.module('ti.sdo.ipc.MessageQ');

MessageQ.SetupTransportProxy =

 xdc.module('ti.sdo.ipc.transports.TransportShmNotifySetup');

Unlike the Notify setup modules, Transport setup modules are generally
not family-specific; most are located in the ti.sdo.ipc.transports package.

IPC provides the following transports. Each has a corresponding setup
module for use as the MessageQ.SetupTransportProxy module.

Table 6-2. Transport Modules and Corresponding Setup Modules

Modules and Description
Transport
Speed

ti.sdo.ipc.transports.TransportShm
ti.sdo.ipc.transports.TransportShmSetup

This shared-memory MessageQ transport uses ListMP to temporarily queue messages in
shared memory before the messages are moved to the destination queue. This transport
is typically slowest because of the overhead of queuing messages using a linked list. This
is the default MessageQ transport on non-F28M35x devices.

Slowest

ti.sdo.ipc.transports.TransportShmCirc
ti.sdo.ipc.transports.TransportShmCircSetup

This shared-memory MessageQ transport uses a fixed-length circular buffer to tempo-
rarily queue messages in shared memory before the messages are moved to the destina-
tion queue. This transport is typically faster than TransportShm because of the
efficiencies gained by using a circular buffer instead of a linked list.

Medium

ti.sdo.ipc.transports.TransportShmNotify
ti.sdo.ipc.transports.TransportShmNotifySetup

This shared-memory MessageQ transport does no buffering before the messages are
moved to the destination queue. Because of the lack of buffering, this transport tends to
offer lower MessageQ latency than either TransportShm or TransportShm. However, If
messages aren’t received quickly enough by the receiver, the sender may spin while wait-
ing for the receiver to move the message to its local queue.

Fastest, but
depends on fast
processing of
messages by
receiver
6-8

Optimizing Shared Memory Usage
6.4 Optimizing Shared Memory Usage

You can use one or more of the following techniques to reduce the
shared memory footprint of IPC applications:

❏ If some connections between processors are not needed, it is not
necessary to attach to those cores. To selectively attach between
cores, use pair-wise synchronization as described in Section 3.2.1.
Your C code must call Ipc_attach() for processors you want to
connect to if you are using pair-wise synchronization. The following
configuration statement causes the Ipc module to expect pair-wise
synchronization.

 Ipc.procSync = Ipc.ProcSync_PAIR;

At run-time, only call Ipc_attach() to a remote processor if one or
more of the following conditions is true:

■ The remote processor is the owner of region 0.

■ It is necessary to send Notifications between this processor and
the remote processor.

■ It is necessary to send MessageQ messages between this
processor and the remote processor.

■ It is necessary for either the local or remote processor to open a
module instance using MODULE_open() that has been created
on the other processor.

❏ Configure the Ipc.setEntryMeta property to disable components of
IPC that are not required. For example, if an application uses Notify
but not MessageQ, disabling MessageQ avoids the creation of
MessageQ transports during Ipc_attach().

 /* To avoid wasting shared mem for MessageQ transports */

 for (var i = 0; i < MultiProc.numProcessors; i++) {

 Ipc.setEntryMeta({

 remoteProcId: 1,

 setupMessageQ: false,

 });

 }

❏ Configure Notify.numEvents to a lower number. The default value of
32 is often significantly more than the total number of Notify events
required on a system. See Section 3.7 for more information.

For example, a simple MessageQ application may simply use two
events (one for NameServer and one for the MessageQ transport).
Optimizing IPC Applications 6-9

Optimizing Shared Memory Usage
In this case, we can optimize memory use with the following
configuration:

 var Notify = xdc.useModule('ti.sdo.ipc.Notify');

 /* Reduce the total number of supported events from

 * 32 to 2 */

 Notify.numEvents = 2;

 var NameServerRemoteNotify =

 xdc.useModule('ti.sdo.ipc.NameServerRemoteNotify');

 NameServerRemoteNotify.notifyEventId = 1;

 var TransportShm =

 xdc.useModule('ti.sdo.ipc.transports.TransportShm');

 TransportShm.notifyEventId = 0;

❏ Reduce the cacheLineSize property of a SharedRegion to reflect the
actual size of the cache line. IPC uses the cacheLineSize setting to
pad data structures in shared memory. Padding is required so that
cache write-back and invalidate operations on data in shared
memory do not affect the cache status of adjacent data. The larger
the cacheLineSize setting, the more shared memory is used for the
sole purpose of padding. Therefore, the cacheLineSize setting
should optimally be set to the actual size of the cache line. The
default cacheLineSize for SharedRegion is 128. Using the correct
size has both performance and size benefits.

The following example (for C6472) sets the cacheLineSize property
to 64 because the shared L2 memory has this cache line size.

 SharedRegion.setEntryMeta(0,

 { base: SHAREDMEM,

 len: SHAREDMEMSIZE,

 ownerProcId: 0,

 isValid: true,

 cacheLineSize: 64, /* SL2 cache line size = 64 */

 name: "SL2_RAM",

 });
6-10

Optimizing Local Memory Usage
6.5 Optimizing Local Memory Usage

If the Custom1 and Custom2 GateMP proxies will never be used, make
sure they are both plugged with the ti.sdo.ipc.gates.GateMPSupportNull
GateMP delegate. By default, GateMP plugs the Custom1 proxy with the
GatePeterson delegate. A considerable amount of local memory is
reserved for use by GatePeterson. You can plug the Custom1 proxy with
the GateMPSupportNull delegate by adding the following configuration
statements to your application:

var GateMP = xdc.useModule('ti.sdo.ipc.GateMP');

GateMP.RemoteCustom1Proxy =

 xdc.useModule('ti.sdo.ipc.gates.GateMPSupportNull');

6.6 Optimizing Code Size

This section provides tips and suggestions for minimizing the code size
of a SYS/BIOS-based application that uses IPC.

❏ For a number of ways to configure SYS/BIOS that reduce code size
by using custom built SYS/BIOS libraries and by disabling various
features, see Section E.3 of the TI SYS/BIOS Real-time Operating
System v6.x User’s Guide (SPRUEX3). In particular, after you have
debugged your code, disabling Asserts as follows helps reduce the
size of your code.

var Defaults = xdc.useModule('xdc.runtime.Defaults');
var Diags = xdc.useModule('xdc.runtimg.Diags');
Defaults.common$.diags_ASSERT = Diags.ALWAYS_OFF;

❏ The NotifyDriverCirc notification driver and the TransportShmNotify
or TransportShmCirc MessageQ transports described in Section 6.3
use less code space than the default Notify driver and MessageQ
transport.

❏ You can reduce code size by not using the HeapBufMP Heap
implementation. Since IPC uses the HeapMemMP implementation
internally, using HeapMemMP in your application does not increase
the code size. However, you should be aware that, depending on
how your application uses heaps, HeapMemMP may lead to
problems with heap fragmentation. See Section 3.5 for more about
Heap implementations.
Optimizing IPC Applications 6-11

Optimizing Code Size
6-12

Appendix A

Rebuilding IPC

This appendix describes how to rebuild the IPC source code.

A.1 Overview. A–2

A.2 Prerequisites . A–2

A.3 Build Procedure. A–2

A.4 Building Your Project Using a Rebuilt IPC . A–4

Topic Page
A-1

Overview
A.1 Overview

The IPC product includes source files and RTSC build scripts that allow
you to modify the IPC sources and rebuild its libraries. You can do this in
order to modify, update, or add functionality.

If you edit the IPC source code and/or corresponding RTSC build scripts,
you must also rebuild IPC in order to create new libraries containing
these modifications.

The instructions in this appendix are tailored for rebuilding on Microsoft
Windows. However, IPC may also be re-built on Linux using these
instructions by changing the DOS commands and paths to the
equivalents for Linux.

Warning: This appendix provides details about rebuilding the IPC
source code. We strongly recommend that you copy the IPC installation
to a directory with a different name and rebuild that copy, rather than
rebuilding the original installation.

A.2 Prerequisites

In order to rebuild IPC, the SYS/BIOS, XDCtools, and IPC products must
all be installed. The SYS/BIOS installation location must be referenced in
the definition of the XDCPATH environment variable.

It is important to build IPC with compatible versions of XDCtools and
SYS/BIOS. To find out which versions are compatible, see the
“Dependencies” section of the Release Notes in the top-level directory of
your IPC installation.

A.3 Build Procedure

Follow these steps to rebuild the IPC source code:

1) Create a new directory on your computer that you will use to store a
copy of the IPC installation. This directory will act as a container for
your own IPC modifications.

The full path to this directory cannot contain any spaces. For
example, we recommend making a directory called "C:\myIpcBuilds"
rather than using a location in the “My Documents” directory tree.
A-2

Build Procedure
2) Using Windows Explorer, copy the entire IPC installation into the
directory you just created. For example, if you installed IPC in the
default installation location, then you should copy the following folder
and all of its contents:

 C:\Program Files\Texas Instruments\ipc_1_22_##_##

into the folder:

 C:\myIpcBuilds

After this step, the folder C:\myIpcBuilds should contain the folder
ipc_1_22_##_##, which is a copy of your IPC installation.

3) Rename the folder that contains the copy of IPC. For example,
rename the following directory:

 C:\myIpcBuilds\ipc_1_22_##_##

to:

 C:\myIpcBuilds\custom_ipc_1_22_##_##

4) Copy the file “config.bld.default” from the “etc” folder of your original
IPC installation into the "packages" folder of the copy of the IPC
installation you just made. For example, copy:

 C:\Program Files\Texas Instruments\ipc_1_22_##_##
 \etc\config.bld.default

to the following location:

 C:\myIpcBuilds\custom_ipc_1_22_##_##\packages

5) Rename the copied “config.bld.default” file to be "ipcConfig.bld".

6) Open the ipcConfig.bld file for text editing.

7) Near the end of the file, look for the array called "Build.targets". This
array contains the list of targets for which IPC should be built. Ensure
that the target for which you want IPC built is uncommented. For
example, if you want to build IPC for the C64P target only, then your
Build.targets array would look similar to the following:

 Build.targets = [
 //C28_large,
 C64P,
 //C67P,
 //C674,
 //Arm9,
 //M3,
 //MSP430,
];

8) Save and exit the file. You are now ready to rebuild IPC.
Rebuilding IPC A-3

Building Your Project Using a Rebuilt IPC
9) Open a DOS command prompt window.

10) If you have not already added SYS/BIOS to your XDCPATH
environment variable, do so now. For example, type:

 set XDCPATH=%XDCPATH%;C:/Program Files/Texas
 Instruments/bios_6_##_##_##/packages

11) Change directories to the location of your copy of IPC. For example:

 cd C:\myIpcBuilds\custom_ipc_1_22_##_##\packages

12) Build IPC using the ipcConfig.bld file as follows:

 xdc XDCBUILDCFG=./ipcConfig.bld -PR .

If you want to clear out intermediate and output files from a previous
build, you can use the following command

 xdc clean

For details about the XDCPATH environment variable, see
http://rtsc.eclipse.org/docs-tip/Managing_the_Package_Path in the
RTSC-pedia. For more about the “xdc” command line, see
http://rtsc.eclipse.org/docs-tip/Command_-_xdc.

A.4 Building Your Project Using a Rebuilt IPC

To build your application using the version of IPC you have rebuilt, you
must point your project to this rebuilt version by following these steps:

1) Open CCS and select the application project you want to rebuild.

2) Right-click on your project and choose Build Properties. If you have
a RTSC configuration project that is separate from your application
project, open the build properties for the configuration project.

3) In the CCS Build category of the Properties dialog, choose the
RTSC tab.
A-4

Building Your Project Using a Rebuilt IPC
4) Under the Products and Repositories tab, uncheck all the boxes for
IPC. This ensures that no version is selected.

5) Click the Add button next to the Products and Repositories tab.

6) Choose Select repository from file-system, and browse to the
“packages” directory of the location where you copied and rebuilt
IPC. For example, the location may be
C:\myIpcBuilds\custom_ipc_1_22_##-##\packages.

7) Click OK to apply these changes to the project.

8) You may now rebuild your project using the re-built version of IPC.
Rebuilding IPC A-5

Building Your Project Using a Rebuilt IPC
A-6

Appendix B

Using IPC on Concerto Devices

This appendix provides target-specific information about using IPC on
Concerto devices.

B.1 Overview. B–2

B.2 Configuring Applications with IpcMgr. B–3

B.3 Examples for Concerto . B–6

Topic Page
B-1

Overview
B.1 Overview

SYS/BIOS supports both the ARM M3 and the ‘C28x cores on Concerto
F28M35x devices. This allows you to use the same SYS/BIOS and IPC
APIs on both processors and to use IPC for communication between the
two cores. The following table identifies which IPC modules are used and
not used with Concerto devices:

In addition, you should be aware of the following special issues:

❏ No caching is performed on Concerto devices. Ignore any
information about caching in the IPC documentation.

❏ Concerto provides a shared timestamp counter that can be read by
either core. SYS/BIOS manages this counter with the
ti.sysbios.family.[c28|arm].f28m35x.TimestampProvider modules.
The Timestamp_get32() APIs use this counter to provide a common
timestamp on both M3 and C28x cores. This is useful when logging
on both cores and debugging multi-core issues.

Table 6-3. IPC modules used with Concerto

Modules Used with Concerto
Modules Not Used
or Supported Notes

MessageQ MessageQ usage is the same.

Notify Notify usage is the same.

MultiProc MultiProc configuration is the same.

IpcMgr
(in ti.sdo.ipc.family.f28m35x)

Ipc IpcMgr must be configured in place of the Ipc
module when using Concerto. See Section B.2.

NotifyDriverCirc
(in ti.sdo.ipc.family.f28m35x)

NotifyDriverShm
NotifyDriverMbx

See Section 6.3.1.

TransportCirc
(in ti.sdo.ipc.family.f28m35x)

TransportShm,
TransportShmNotify

See Section 6.3.2.

List List usage is the same.

NameServer NameServer usage is the same.

GateMP Shared gates are not supported with Concerto.

HeapBuf
(from SYS/BIOS)

Heap*MP Shared heaps are not supported with Concerto.

ListMP Shared lists are not supported with Concerto.

SharedRegion IpcMgr is used instead of SharedRegion to spec-
ify the location of shared memory with Concerto.
B-2

Configuring Applications with IpcMgr
B.2 Configuring Applications with IpcMgr

The ti.sdo.ipc.family.f28m35x.IpcMgr module is used only for Concerto
F28M35x devices. You use IpcMgr instead of the ti.sdo.ipc.Ipc module.
That is, your application should not call Ipc_start() or Ipc_attach().

The IpcMgr module statically configures which shared memory segments
to enable between the M3 and ‘C28 processors. No IpcMgr APIs need to
be called at runtime. Instead, the drivers for IPC are created during this
module's startup function, which runs internally. The internal startup
function also synchronizes the M3 and ‘C28 processors.

Concerto devices have 8 segments of shared RAM. Each segment has
8 KB. Only one core can have read/write access to a shared memory
segment at a time. The other core has read access to that segment.
When configuring M3 and ‘C28 applications, you must specify the shared
memory read and write addresses that IPC should use. Your application
can use other shared memory segments as needed.

For example, suppose you want to configure the Concerto with the M3
processor writing to the S6 segment of shared RAM and the ‘C28x writing
to the S7 segment of shared RAM. The following diagram shows the local
addresses used to point to the start of the shared memory segment from
both processors:
Using IPC on Concerto Devices B-3

Configuring Applications with IpcMgr
The IpcMgr module configuration for such an ‘C28 application would be
as follows:

var IpcMgr =
 xdc.useModule('ti.sdo.ipc.family.f28m35x.IpcMgr');
IpcMgr.readAddr = 0x12000; /* S6 RAM */
IpcMgr.writeAddr = 0x13000; /* S7 RAM */

The corresponding configuration for the M3 application would be:

var IpcMgr =
 xdc.useModule('ti.sdo.ipc.family.f28m35x.IpcMgr');
IpcMgr.readAddr = 0x20016000; /* S7 RAM */
IpcMgr.writeAddr = 0x20014000; /* S6 RAM */
IpcMgr.sharedMemoryOwnerMask = 0x80;

The readAddr and writeAddr segments specified for a processor must be
different. The readAddr segment on one processor must correspond to
the writeAddr segment on the other processor. The memory addresses
you use must be the physical addresses understood by the local core.

By default, the M3 has write access to all segments initially. IPC’s IpcMgr
module provides a sharedMemoryOwnerMask that the M3 core must set
to provide write access to the ‘C28 core. This mask writes to the M3’s
MSxMSEL register. This register determines which processor has write
access to each of the 8 shared RAM segments. In the previous example,
the M3 application sets the sharedMemoryOwnerMask to 0x80, which
sets the bit for the S7 RAM segment to “1”, allowing the ‘C28 to write to
that segment.

Additional configuration properties you can set for the IpcMgr module
include:

❏ sharedMemoryEnable. This property lets the M3 processor disable
one or more shared RAM segments. By default, all segments are
enabled. This property writes to the MEMCNF register from the M3.
To disable a shared RAM segment, set the corresponding bit to 0.
You cannot load data into a disabled RAM segment. (Do not use in
C28 applications.)

❏ sharedMemoryAccess. This property lets the M3 processor specify
the type of access the owner can have to shared RAM segments.
This property writes to the MSxSRCR register from the M3. (Do not
use in C28 applications.)

By default, the segment owner has fetch, DMA write, and CPU write
access to all segments owned. You should not disable fetch or CPU
write access for the two segments used by IpcMgr. DMA write access
is not used by IpcMgr.
B-4

Configuring Applications with IpcMgr
The IpcMgr.sharedMemoryAccess configuration property is an array
of eight 32-bit masks. Mask[0] corresponds to the S0 shared RAM
segment, and so on. In each mask, bits 0 through 2 are used to
control fetch (bit 0), DMA write (bit 1), and CPU write (bit 2) access.
All other bits are ignored. By default, all three types of access are
allowed, which corresponds to a bit setting of zero (0). Setting a bit to
1 disables that type of access for the shared RAM segment
corresponding to that mask. For example, the following statements
remove DMA write and CPU write access for the S4 segment:

 var IpcMgr =
 xdc.useModule('ti.sdo.ipc.family.f28m35x.IpcMgr');
 IpcMgr.sharedMemoryAccess[4] = 0x6;

❏ IpcMgr.ipcSetFlag. This property determines which flag generates
an IPC interrupt. The default is 3. You can use a value from 0 to 3,
but the value must be the same on both processors.

In addition, the IpcMgr module provides configuration properties that set
the number of Notify and MessageQ messages stored in the circular
buffers and the largest MessageQ size (in bytes) supported by the
transport. These can be modified to reduce shared memory use if the
application passes relatively few messages between the processors.

❏ IpcMgr.numNotifyMsgs. By default, the Notify driver’s circular
buffer can hold up to 32 messages, which means there can be up to
31 outstanding notifications. You can change this value by setting the
IpcMgr.numNotifyMsgs property to some other power of 2.

The IpcMgr.numNotifyMsgs property affects the size of the shared
memory circular buffer used to store notifications regardless of the
event IDs. Changing this value allows you to optimize either the
memory use or the performance. That is, with fewer messages, the
buffer is smaller but there is a higher chance that the system will have
a full circular buffer and need to wait for space to be freed.

Note that the IpcMgr.numNotifyMsgs property is different from the
Notify.numEvents property. The Notify.numEvents property
determines the number of unique event IDs that can be used in a
system. When this property is set to the default value of 32, Notify
event IDs can range from 0 to 31.

❏ IpcMgr.numMessageQMsgs. By default, the MessageQ transport’s
circular buffer can hold up to 4 messages. The number of MessageQ
messages must be a power of 2. If your application does not use
MessageQ, you should set this property to 0 in order to reduce the
application’s memory footprint.
Using IPC on Concerto Devices B-5

Examples for Concerto
❏ IpcMgr.messageQSize. By default, each message in the
MessageQ transport’s circular buffer can hold 128 bytes. If your
application stores less information in each MessageQ message, you
should set this property to reduce the application’s memory footprint.

If you want to know how much memory is used by IpcMgr, open the .map
file that is created when you build your application, and search for the
section names that contain ti.sdo.ipc.family.f28m35x.IpcMgr.readSect
and ti.sdo.ipc.family.f28m35x.IpcMgr.writeSect.

B.3 Examples for Concerto

IPC provides Notify and MessageQ examples for both the ARM M3 and
the C28x cores. Both are dual-core examples in which the same program
(with a slightly different configuration) is executed on both cores.

The Notify example uses the ti.ipc.Notify module to send a notification
back and forth between the M3 and the C28 a number of times (10 by
default). When a processor receives an event, it posts a Semaphore that
allows a Task function to continue running and send a reply notification
to the other processor.

The MessageQ example uses the ti.ipc.MessageQ module to send
messages between processors. Each processor creates its own
MessageQ first, and then tries to open the remote processor's
MessageQ.

If you compare the CFG files for the Concerto examples with the
examples for some other device, you will notice that the Concerto
configuration is simpler because it does not need to synchronize the
processors or configure the NotifySetup and SharedRegion modules.

If you compare the C code for the Concerto examples with the examples
for some other device, you will find the following categories of
differences:

❏ The Concerto MessageQ example allocates MessageQ messages
using the ti.sysbios.heaps.HeapBuf module instead of the
ti.sdo.ipc.HeapBufMP module, because HeapBufMP is not
supported for Concerto.

❏ The Concerto examples do not call Ipc_start() or include the
ti.sdo.ipc.Ipc module.

❏ In the Concerto examples, the other processor is called the “remote”
processor instead of the “next” processor, since there are only two
processors.
B-6

This is a draft version printed from file: ipc_ugIX.fm on September 28, 2011
Index

drivers 2-4
A
abort() function, Stream module 2-9, 2-25
add() function

NameServer module 4-11
addUInt32() function, NameServer module 4-11
alloc() function

Heap*MP modules 3-33
HeapMemMP module 3-33, 3-34
HeapMultiBufMP module 3-33
MessageQ module 3-15

allocation, dynamic 1-7
attaching to processor 3-10

B
BIOS module

libType property 6-2
Build.targets array 7-3
building IPC 7-2

C
cache, for linked lists 3-29
CCS Build Configuration 6-2
CDOC 1-9
cfg file 1-4

See also configuration
chanParams structure 2-29
close() function

GateMP module 3-38
Heap*MP modules 3-33
IDriver interface 2-27, 2-30

close() functions 3-5
cluster

configuring 4-8
connections between different 4-9
definition 4-6

compiler options 6-4
configuration

cfg file for 1-4
converters 2-35

gates 3-36
heaps 3-30
IomAdapter module 2-36
Ipc module 3-8
message queues 3-12
MultiProc module 4-6
streams 2-12, 2-18, 2-22

control() function, IDriver interface 2-27, 2-32
converters 2-34
create() function

Driver module 2-28
GateMP module 3-36
Heap*MP modules 3-31
MessageQ module 3-13
NameServer module 4-11
Stream module 2-6
SyncGeneric module 2-24

create() functions 3-5
custom libType 6-3
customCCOpts property 6-4

D
data passing

use case for 1-6
See also messaging; notification

debug build profile 6-2
delete() function

Driver module 2-28
GateMP module 3-38
Heap*MP modules 3-33
MessageQ module 3-20
NameServer module 4-13

delete() functions 3-5
detaching from processor 3-10
device-independent I/O 2-34
doubly-linked lists. See List module
Doxygen 1-9
Driver_create() function 2-28
Driver_delete() function 2-28
drivers 2-4, 2-27

acquiring handle for 2-4
Index--1

 Index
closing 2-30
configuring 2-4
control commands for 2-32
creating 2-28
deleting 2-28
IOM drivers, using with SYS/BIOS 6 2-36
ISRs for 2-33
opening 2-28
submitting jobs to 2-31
template generator for 2-27

DriverTable module 2-5
driverTemplate tool 2-27
DSP/BIOS, name changed 1-2
dynamic allocation scenario 1-7

E
empty() function

List module 4-5
ListMP module 3-27

enter() function, GateMP module 3-38
error handling 3-6

for drivers 2-28, 2-29, 2-32, 2-33
for message queues 3-18
for streams 2-7, 2-9, 2-25

Error_Block structure 2-7
Event module 2-20
Event_pend() function 2-20
Event_post() function 2-20
events 2-20, 3-22

F
free() function

Heap*MP modules 3-34
HeapMultiBufMP module 3-34
MessageQ module 3-15

G
GateMP module 3-36

optimizing 6-11
GateMP_close() function 3-38
GateMP_create() function 3-36
GateMP_delete() function 3-38
GateMP_enter() function 3-38
GateMP_leave() function 3-39
GateMP_open() function 3-38
GateMP_Params structure 3-36
GateMP_query() function 3-39
gates

closing 3-38
configuring 3-36

creating 3-36
deleting 3-38
entering 3-38
leaving 3-39
name server for 3-39
opening 3-38
program flow for 3-40
querying 3-39

generic callbacks, with streams 2-24
get() function

List module 4-3, 4-5
MessageQ module 3-19
NameServer module 4-11, 4-13

getDstQueue() function, MessageQ module 3-24
getExtendedStats() function, Heap*MP modules 3-

34
getHead() function, ListMP module 3-27
getLocal() function, NameServer module 4-13
getMsgId() function, MessageQ module 3-19
getMsgPri() function, MessageQ module 3-19
getMsgSize() function, MessageQ module 3-19
getReplyQueue() function, MessageQ module 3-19
getStats() function

Heap*MP modules 3-34
Memory module 3-34

getTail() function, ListMP module 3-27

H
hardware interrupts 3-41
Heap*MP_alloc() function 3-33
Heap*MP_close() function 3-33
Heap*MP_create() function 3-31
Heap*MP_delete() function 3-33
Heap*MP_free() function 3-34
Heap*MP_getExtendedStats() function 3-34
Heap*MP_getStats() function 3-34
Heap*MP_isBlocking() function 3-34
Heap*MP_open() function 3-32
Heap*MP_Params structure 3-31
HeapBufMP module 3-30
HeapMemMP module 3-30
HeapMemMP_alloc() function 3-33
HeapMemMP_free() function 3-34
HeapMultiBufMP module 3-30
HeapMultiBufMP_alloc() function 3-33
HeapMultiBufMP_free() function 3-34
heaps 3-30

allocating memory from 3-33
closing 3-33
configuring 3-30
creating 3-31
deleting 3-33
freeing memory to 3-34
Index--2

 Index
message queues allocated from 3-16
opening 3-32
program flow for 3-35
statistics for, querying 3-34

help 1-9

I
IConverter interface 2-34
IDriver interface 2-4, 2-27
IDriver_close() function 2-27, 2-30
IDriver_control() function 2-27, 2-32
IDriver_open() function 2-27, 2-28
IDriver_submit() function 2-27, 2-31
IMessageQTransport interface 3-23
INameServerRemote interface 4-13
init() function, MessageQ module 3-13
insert() function

List module 4-4
ListMP module 3-27

instrumented libType 6-3
I/O modules 2-3
IomAdapter module 2-36
IPC 1-2

further information about 1-9
modules in 3-5
requirements for 1-3
use cases for 1-4
See also specific modules

ipc directory 3-3
Ipc module 3-7
Ipc_start() function 3-7
isBlocking() function, Heap*MP module 3-34
ISRs for driver 2-33
issue() function, Stream module 2-9, 2-16, 2-20, 2-

26
ISync interface 2-8, 3-21
ISync_signal() function 2-8, 2-16, 2-20, 3-21
ISync_wait() function 2-8, 3-21

L
leave() function, GateMP module 3-39
libraries, SYS/BIOS 6-3
libType property 6-2
linked lists. See List module; ListMP module
linking 6-3
List module 4-2
List_empty() function 4-5
List_get() function 4-3, 4-5
List_insert() function 4-4
List_next() function 4-3
List_prev() function 4-3

List_put() function 4-3, 4-4, 4-5
List_putHead() function 4-4, 4-5
List_remove() function 4-4
ListMP module 1-6, 3-26
ListMP_empty() function 3-27
ListMP_getHead() function 3-27
ListMP_getTail() function 3-27
ListMP_insert() function 3-27
ListMP_next() function 3-27
ListMP_Params structure 3-26
ListMP_prev() function 3-27
ListMP_putHead() function 3-27
ListMP_putTail() function 3-27
ListMP_remove() function 3-27

M
memory

fixed-size. See heaps
footprint 6-9
mutual exclusion for shared memory. See gates
requirements for, minimizing 6-11
transports using shared memory 3-23
variable-size. See heaps

Memory_getStats() function 3-34
Memory_query() function 3-34
message queues 3-11

allocating 3-15
configuring 3-12
creating 3-13
deleting 3-20
freeing 3-15
heaps and 3-16
opening 3-14
priority of messages 3-20
program flow for 3-25
receiving messages 3-19
reply queues for 3-22
sending messages 3-17
thread synchronization and 3-21
transports for 3-23

MessageQ module 1-8, 3-11
MessageQ_alloc() function 3-15
MessageQ_create() function 3-13
MessageQ_delete() function 3-20
MessageQ_free() function 3-15
MessageQ_get() function 3-19
MessageQ_getDstQueue() function 3-24
MessageQ_getMsgId() function 3-19
MessageQ_getMsgPri() function 3-19
MessageQ_getMsgSize() function 3-19
MessageQ_getReplyQueue() function 3-19
MessageQ_init() function 3-13
MessageQ_open() function 3-14
Index--3

 Index
MessageQ_Params structure 3-22
MessageQ_put() function 3-17
messaging

sophisticated, use case for 1-8
variable-length 3-11
See also data passing; notification

minimal use scenario 1-5
MODULE_Params structure 3-5
modules 3-5

in ti.sdo.io package 2-2
in ti.sdo.ipc package 3-2
in ti.sdo.utils package 4-2
See also specific modules

MsgHeader structure 3-16
MultiProc module 4-6
MultiProc_getBaseIdOfCluster() function 4-8
MultiProc_getId() function 4-7
MultiProc_getName() function 4-8
MultiProc_getNumProcessors() function 4-8
MultiProc_getNumProcsInCluster() function 4-8
MultiProc_self() function 4-8
MultiProc_setLocalId() function 4-6
multi-processing 1-2

processor IDs for 4-6
See also specific modules

N
NameServer module 3-39, 4-11
NameServer_add() function 4-11
NameServer_addUInt32() function 4-11
NameServer_create() function 4-11
NameServer_delete() function 4-13
NameServer_get() function 4-11, 4-13
NameServer_getLocal() function 4-13
NameServer_Params structure 4-11
NameServer_remove() function 4-13
NameServer_removeEntry() function 4-13
NameServerMessageQ module 4-9
NameServerRemoteNotify module 4-9, 6-10
next() function

List module 4-3
ListMP module 3-27

non-instrumented libType 6-3
notification 3-41

use case for 1-5
See also data passing; messaging

Notify module 1-5, 3-41

O
online documentation 1-9

open() function
GateMP module 3-38
Heap*MP modules 3-32
IDriver interface 2-27, 2-28
MessageQ module 3-14

open() functions 3-5
operating system requirements 1-3
optimization 6-1

P
pend() function, Event module 2-20
performance 6-5
post() function

Event module 2-20
Swi module 2-16

prev() function
List module 4-3
ListMP module 3-27

priority of messages 3-20
put() function

List module 4-3, 4-4, 4-5
MessageQ module 3-17

putHead() function
List module 4-4, 4-5
ListMP module 3-27

putTail() function, ListMP module 3-27

Q
query() function

GateMP module 3-39
Memory module 3-34

queues, message. See message queues

R
read() function, Stream module 2-24, 2-26
rebuilding IPC 7-2
reclaim() function, Stream module 2-9, 2-16, 2-26
release build profile 6-2
remote communication, with transports 3-23
Remote driver 4-13
remove() function

List module 4-4
ListMP module 3-27
NameServer module 4-13

removeEntry() function, NameServer module 4-13
reply queues 3-22
requirements for IPC 1-3
RTSC Build-Profile field 6-2
Index--4

 Index
S
semaphores

binary. See SyncSem module; SyncSemThread
module

created by application 2-15
created by stream 2-7, 2-8

setLocalId() function, MultiProc module 4-6
SharedRegion module 3-43
SharedRegion pointers 3-27
SharedRegion table 3-45
signal() function, ISync interface 2-8, 2-16, 2-20, 3-

21
signal() function, Sync module 2-8
software interrupts

managing over hardware interrupts 3-41
streams used with 2-16, 2-26

sophisticated messaging scenario 1-8
SRPtr pointer 3-48
Stream module 2-3, 2-6, 2-37
Stream_abort() function 2-9, 2-25
Stream_create() function 2-6
Stream_issue() function 2-9, 2-16, 2-20, 2-26
Stream_Params structure 2-6
Stream_read() function 2-24, 2-26
Stream_reclaim() function 2-9, 2-16, 2-26
Stream_write() function 2-24, 2-26
streams 2-3, 2-6

aborting 2-25
configuring 2-12, 2-18, 2-22
creating 2-6
deleting 2-7
error handling for 2-9, 2-25
events used with 2-20
generic callbacks used with 2-24
porting to another operating system 2-37
reading 2-24
semaphores supplied by application for 2-15
software interrupts used with 2-16, 2-26
synchronizing 2-8
tasks used with 2-9, 2-26
writing 2-24

submit() function, IDriver interface 2-27, 2-31
Swi module 2-16
Swi_post() function 2-16
Sync module 2-8
Sync_signal() function 2-8
Sync_wait() function 2-8
SyncEvent module 2-8, 2-20, 3-22
SyncGeneric module 2-8, 2-24, 3-21
SyncGeneric_create() function 2-24
SyncNull module 2-8, 3-21

SyncSem module 2-8, 3-22
SyncSemThread module 2-8, 3-21
SyncSwi module 2-8, 2-16, 3-22
SYS/BIOS 1-2
SYS/BIOS libraries 6-3
system requirements 1-3

T
tasks, streams used with 2-9, 2-26
threads 1-2, 3-5, 3-21
ti.sdo.io package 2-2
ti.sdo.ipc package 1-2, 3-2
ti.sdo.utils package 4-2
ti.sysbios.syncs package 2-8
timeouts

MessageQ 3-11, 3-19, 3-21
NameServerMessageQ 4-9
NameServerRemoteNotify 4-9
streams 2-9

transports 3-23
TransportShm module 3-23
tuning 6-1

U
use cases 1-4
user function 3-9

V
variable-length messaging 3-11
version of IPC 7-5
virtual I/O devices 2-34

W
wait() function, ISync interface 2-8, 3-21
wait() function, Sync module 2-8
whole_program build profile 6-2
whole_program_debug build profile 6-2
write() function, Stream module 2-24, 2-26

X
xdc.runtime.knl package 2-8
XDCPATH environment variable 7-4
Index--5

 Index
Index--6

	SYS/BIOS Inter-Processor Communication (IPC) and I/O User’s Guide
	Preface
	About This Guide
	Intended Audience
	Notational Conventions
	Trademarks

	Contents
	About IPC
	1.1 What is IPC?
	1.2 Requirements
	1.3 About this User Guide
	1.4 Use Cases for IPC
	1.4.1 Minimal Use Scenario
	1.4.2 Data Passing Scenario
	1.4.3 Dynamic Allocation Scenario
	1.4.4 Powerful But Easy-to-Use Messaging with MessageQ

	1.5 Related Documents

	The Input/Output Package
	2.1 Modules in IPC’s ti.sdo.io Package
	2.2 Overview of Streams
	2.3 Configuring a Driver and Acquiring a Driver Handle
	2.4 Streams
	2.4.1 Creating and Deleting Streams
	2.4.2 Streams and Error Blocks
	2.4.3 Stream and the Synchronization Mechanisms
	2.4.4 Using Streams with Tasks
	2.4.4.1 Using a Semaphore Instance Created by the Application with a Stream Instance

	2.4.5 Using Stream with Swis
	2.4.6 Using Streams with Events
	2.4.7 Using Streams with Generic Callbacks
	2.4.8 Using Stream_read() and Stream_write()
	2.4.9 Stream_abort() and Error Handling
	2.4.10 Constraints When Using Streams

	2.5 The IDriver Interface
	2.5.1 Using the Driver Template Generator
	2.5.2 Driver create() Function
	2.5.3 Driver delete() Function
	2.5.4 IDriver_open() Function
	2.5.5 IDriver_close() Function
	2.5.6 IDriver_submit() Function
	2.5.7 IDriver_control() Function
	2.5.8 Driver ISRs

	2.6 The IConverter Interface
	2.7 The IomAdapter Module
	2.7.1 Mapping IOM Functions to IDriver Functions

	2.8 Porting the Stream Module to Another Operating System

	The Inter-Processor Communication Package
	3.1 Modules in the IPC Package
	3.1.1 Including Header Files
	3.1.2 Standard IPC Function Call Sequence
	3.1.3 Error Handling in IPC

	3.2 Ipc Module
	3.2.1 Ipc Module Configuration
	3.2.2 Ipc Module APIs

	3.3 MessageQ Module
	3.3.1 Configuring the MessageQ Module
	3.3.2 Creating a MessageQ Object
	3.3.3 Opening a Message Queue
	3.3.4 Allocating a Message
	3.3.5 Sending a Message
	3.3.6 Receiving a Message
	3.3.7 Deleting a MessageQ Object
	3.3.8 Message Priorities
	3.3.9 Thread Synchronization
	3.3.10 ReplyQueue
	3.3.11 Remote Communication via Transports
	3.3.12 Sample Runtime Program Flow (Dynamic)

	3.4 ListMP Module
	3.5 Heap*MP Modules
	3.5.1 Configuring a Heap*MP Module
	3.5.2 Creating a Heap*MP Instance
	3.5.3 Opening a Heap*MP Instance
	3.5.4 Closing a Heap*MP Instance
	3.5.5 Deleting a Heap*MP Instance
	3.5.6 Allocating Memory from the Heap
	3.5.7 Freeing Memory to the Heap
	3.5.8 Querying Heap Statistics
	3.5.9 Sample Runtime Program Flow

	3.6 GateMP Module
	3.6.1 Creating a GateMP Instance
	3.6.2 Opening a GateMP Instance
	3.6.3 Closing a GateMP Instance
	3.6.4 Deleting a GateMP Instance
	3.6.5 Entering a GateMP Instance
	3.6.6 Leaving a GateMP Instance
	3.6.7 Querying a GateMP Instance
	3.6.8 NameServer Interaction
	3.6.9 Sample Runtime Program Flow (Dynamic)

	3.7 Notify Module
	3.8 SharedRegion Module
	3.8.1 Adding Table Entries Statically
	3.8.2 Modifying Table Entries Dynamically
	3.8.3 Using Memory in a Shared Region
	3.8.4 Getting Information About a Shared Region

	The Utilities Package
	4.1 Modules in the Utils Package
	4.2 List Module
	4.2.1 Basic FIFO Operation of a List
	4.2.2 Iterating Over a List
	4.2.3 Inserting and Removing List Elements
	4.2.4 Atomic List Operations

	4.3 MultiProc Module
	4.3.1 Configuring Clusters With the MultiProc Module

	4.4 NameServer Module

	Porting IPC
	5.1 Interfaces to Implement
	5.2 Other Porting Tasks

	Optimizing IPC Applications
	6.1 Compiler and Linker Optimization
	6.2 Optimizing Runtime Performance
	6.3 Optimizing Notify and MessageQ Latency
	6.3.1 Choosing and Configuring Notify Drivers
	6.3.2 Choosing and Configuring MessageQ Transports

	6.4 Optimizing Shared Memory Usage
	6.5 Optimizing Local Memory Usage
	6.6 Optimizing Code Size

	Rebuilding IPC
	A.1 Overview
	A.2 Prerequisites
	A.3 Build Procedure
	A.4 Building Your Project Using a Rebuilt IPC

	Using IPC on Concerto Devices
	B.1 Overview
	B.2 Configuring Applications with IpcMgr
	B.3 Examples for Concerto

	Index

